Suppr超能文献

肿瘤诱导血管生成的连续和离散数学模型。

Continuous and discrete mathematical models of tumor-induced angiogenesis.

作者信息

Anderson A R, Chaplain M A

机构信息

Department of Mathematics, University of Dundee, U.K.

出版信息

Bull Math Biol. 1998 Sep;60(5):857-99. doi: 10.1006/bulm.1998.0042.

Abstract

Angiogenesis, the formation of blood vessels from a pre-existing vasculature, is a process whereby capillary sprouts are formed in response to externally supplied chemical stimuli. The sprouts then grow and develop, driven initially by endothelial-cell migration, and organize themselves into a dendritic structure. Subsequent cell proliferation near the sprout tip permits further extension of the capillary and ultimately completes the process. Angiogenesis occurs during embryogenesis, wound healing, arthritis and during the growth of solid tumors. In this paper we present both continuous and discrete mathematical models which describe the formation of the capillary sprout network in response to chemical stimuli (tumor angiogenic factors, TAF) supplied by a solid tumor. The models also take into account essential endothelial cell-extracellular matrix interactions via the inclusion of the matrix macromolecule fibronectin. The continuous model consists of a system of nonlinear partial differential equations describing the initial migratory response of endothelial cells to the TAF and the fibronectin. Numerical simulations of the system, using parameter values based on experimental data, are presented and compared qualitatively with in vivo experiments. We then use a discretized form of the partial differential equations to develop a biased random-walk model which enables us to track individual endothelial cells at the sprout tips and incorporate anastomosis, mitosis and branching explicitly into the model. The theoretical capillary networks generated by computer simulations of the discrete model are compared with the morphology of capillary networks observed in in vivo experiments.

摘要

血管生成是指从预先存在的脉管系统形成血管的过程,在此过程中,毛细血管芽会因外部提供的化学刺激而形成。这些芽随后生长发育,最初由内皮细胞迁移驱动,并自行组织成树状结构。随后,芽尖附近的细胞增殖使毛细血管得以进一步延伸,最终完成整个过程。血管生成发生在胚胎发育、伤口愈合、关节炎以及实体肿瘤生长过程中。在本文中,我们提出了连续和离散数学模型,这些模型描述了响应实体肿瘤提供的化学刺激(肿瘤血管生成因子,TAF)而形成的毛细血管芽网络。这些模型还通过纳入基质大分子纤连蛋白,考虑了内皮细胞与细胞外基质之间的重要相互作用。连续模型由一组非线性偏微分方程组成,描述了内皮细胞对TAF和纤连蛋白的初始迁移反应。给出了使用基于实验数据的参数值对该系统进行的数值模拟,并与体内实验进行了定性比较。然后,我们使用偏微分方程的离散形式来开发一个有偏随机游走模型,该模型使我们能够追踪芽尖处的单个内皮细胞,并将吻合、有丝分裂和分支明确纳入模型。将离散模型计算机模拟生成的理论毛细血管网络与体内实验中观察到的毛细血管网络形态进行了比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验