Raj A, Paul M R
Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA.
Chaos. 2024 Oct 1;34(10). doi: 10.1063/5.0210661.
We explore the chaotic dynamics of a large one-dimensional lattice of coupled maps with diffusive coupling of varying strength using the covariant Lyapunov vectors (CLVs). Using a lattice of diffusively coupled quadratic maps, we quantify the growth of spatial structures in the chaotic dynamics as the strength of diffusion is increased. When the diffusion strength is increased from zero, we find that the leading Lyapunov exponent decreases rapidly from a positive value to zero to yield a small window of periodic dynamics which is then followed by chaotic dynamics. For values of the diffusion strength beyond the window of periodic dynamics, the leading Lyapunov exponent does not vary significantly with the strength of diffusion with the exception of a small variation for the largest diffusion strengths we explore. The Lyapunov spectrum and fractal dimension are described analytically as a function of the diffusion strength using the eigenvalues of the coupling operator. The spatial features of the CLVs are quantified and compared with the eigenvectors of the coupling operator. The chaotic dynamics are composed entirely of physical modes for all of the conditions we explore. The leading CLV is highly localized and localization decreases with increasing strength of the spatial coupling. The violation of the dominance of Oseledets splitting indicates that the entanglement of pairs of CLVs becomes more significant between neighboring CLVs as the strength of diffusion is increased.
我们使用协变李雅普诺夫向量(CLV)研究具有不同强度扩散耦合的大型一维耦合映射晶格的混沌动力学。通过一个具有扩散耦合的二次映射晶格,随着扩散强度的增加,我们量化了混沌动力学中空间结构的增长。当扩散强度从零开始增加时,我们发现主导李雅普诺夫指数从正值迅速降至零,产生一个小的周期动力学窗口,随后是混沌动力学。对于超出周期动力学窗口的扩散强度值,主导李雅普诺夫指数除了在我们探索的最大扩散强度时有小的变化外,随扩散强度变化不显著。利用耦合算子的特征值,解析地描述了李雅普诺夫谱和分形维数作为扩散强度的函数。对CLV的空间特征进行了量化,并与耦合算子的特征向量进行了比较。在我们探索的所有条件下,混沌动力学完全由物理模式组成。主导CLV高度局域化,并且局域化随着空间耦合强度的增加而减小。奥赛列德茨分裂优势的违反表明,随着扩散强度的增加,相邻CLV之间CLV对的纠缠变得更加显著。