Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.
Graduate School of Pharmaceutical Sciences, Josai University, Saitama, 350-0295, Japan.
Plant J. 2024 Mar;117(5):1453-1465. doi: 10.1111/tpj.16573. Epub 2023 Dec 20.
Pungent capsaicinoid is synthesized only in chili pepper (Capsicum spp.). The production of vanillylamine from vanillin is a unique reaction in the capsaicinoid biosynthesis pathway. Although putative aminotransferase (pAMT) has been isolated as the vanillylamine synthase gene, it is unclear how Capsicum acquired pAMT. Here, we present a phylogenetic overview of pAMT and its homologs. The Capsicum genome contained 5 homologs, including pAMT, CaGABA-T1, CaGABA-T3, and two pseudogenes. Phylogenetic analysis indicated that pAMT is a member of the Solanaceae cytoplasmic GABA-Ts. Comparative genome analysis found that multiple copies of GABA-T exist in a specific Solanaceae genomic region, and the cytoplasmic GABA-Ts other than pAMT are located in the region. The cytoplasmic GABA-T was phylogenetically close to pseudo-GABA-T harboring a plastid transit peptide (pseudo-GABA-T3). This suggested that Solanaceae cytoplasmic GABA-Ts occurred via duplication of a chloroplastic GABA-T ancestor and subsequent loss of the plastid transit signal. The cytoplasmic GABA-T may have been translocated from the specific Solanaceae genomic region during Capsicum divergence, resulting in the current pAMT locus. A recombinant protein assay demonstrated that pAMT had higher vanillylamine synthase activity than those of other plant GABA-Ts. pAMT was expressed exclusively in the placental septum of mature green fruit, whereas tomato orthologs SlGABA-T2/4 exhibit a ubiquitous expression pattern in plants. These findings suggested that both the increased catalytic efficiency and transcriptional changes in pAMT may have contributed to establish vanillylamine synthesis in the capsaicinoid biosynthesis pathway. This study provides insights into the establishment of pungency in the evolution of chili peppers.
辛辣的辣椒素仅在辣椒(Capsicum spp.)中合成。香草胺从香草醛的生成是辣椒素生物合成途径中的一个独特反应。虽然已经分离出假定的氨基转移酶(pAMT)作为香草胺合酶基因,但尚不清楚辣椒如何获得 pAMT。在这里,我们对 pAMT 及其同源物进行了系统发育概述。辣椒基因组包含 5 个同源物,包括 pAMT、CaGABA-T1、CaGABA-T3 和两个假基因。系统发育分析表明,pAMT 是茄科细胞质 GABA-Ts 的成员。比较基因组分析发现,GABA-T 的多个副本存在于特定的茄科基因组区域中,除 pAMT 之外的细胞质 GABA-Ts 位于该区域。细胞质 GABA-T 在系统发育上与具有质体转运肽(假 GABA-T3)的假 GABA-T 密切相关。这表明茄科细胞质 GABA-Ts 是通过叶绿体 GABA-T 祖先的复制和随后质体转运信号的丢失而发生的。细胞质 GABA-T 可能在辣椒分化过程中从特定的茄科基因组区域转移而来,导致目前的 pAMT 基因座。重组蛋白测定表明,pAMT 具有比其他植物 GABA-Ts 更高的香草胺合酶活性。pAMT 仅在成熟绿色果实的胎盘隔室中表达,而番茄同源物 SlGABA-T2/4 在植物中表现出普遍的表达模式。这些发现表明,pAMT 的催化效率提高和转录变化可能共同促成了香草胺在辣椒素生物合成途径中的合成。本研究为辣椒素进化中辣味的建立提供了线索。