Suppr超能文献

通过级联空穴迁移实现太阳能一氧化碳还原

Solar CO Reduction Enabled by Cascade Hole Migration.

作者信息

Chen Yi-Han, Lu Shao-Jun, Chen Qing, Li Zhuang-Yang, Zhu Jun-Rong, Xiao Fang-Xing

机构信息

College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province 350108, China.

出版信息

Inorg Chem. 2024 Jan 8;63(1):870-880. doi: 10.1021/acs.inorgchem.3c03888. Epub 2023 Dec 20.

Abstract

Solar-powered photocatalytic conversion of CO to hydrocarbon fuels represents an emerging approach to solving the greenhouse effect. However, low charge separation efficiency, deficiency of surface catalytic active sites, and sluggish charge-transfer kinetics, together with the complicated reaction pathway, concurrently hinder the CO reduction. Herein, we show the rational construction of transition metal chalcogenides (TMCs) heterostructure CO reduction photosystems, wherein the TMC substrate is tightly integrated with amorphous oxygen-containing cobalt sulfide (CoSOH) by a solid non-conjugated polymer, i.e., poly(vinyl alcohol) (PVA), to customize the unidirectional charge-transfer pathway. In this well-defined multilayered nanoarchitecture, the PVA interim layer intercalated between TMCs and CoSOH acts as a hole-relaying mediator and meanwhile boosts CO adsorption capacity, while CoSOH functions as a terminal hole-collecting reservoir, stimulating the charge transport kinetics and boosting the charge separation over TMCs. This peculiar interface configuration and charge transport characteristics endow TMC/PVA/CoSOH heterostructures with significantly enhanced visible-light-driven photoactivity and CO conversion. Based on the intermediates probed during the photocatalytic CO reduction reaction, the photocatalytic mechanism was determined. Our work would inspire sparkling ideas to mediate the charge transfer over semiconductor for solar carbon neutral conversion.

摘要

太阳能驱动的将一氧化碳光催化转化为碳氢燃料是解决温室效应的一种新兴方法。然而,电荷分离效率低、表面催化活性位点不足、电荷转移动力学缓慢以及反应途径复杂,共同阻碍了一氧化碳的还原。在此,我们展示了过渡金属硫族化物(TMCs)异质结构一氧化碳还原光系统的合理构建,其中TMCs基底通过固体非共轭聚合物即聚乙烯醇(PVA)与含非晶态氧的硫化钴(CoSOH)紧密结合,以定制单向电荷转移途径。在这种明确的多层纳米结构中,插层在TMCs和CoSOH之间的PVA中间层充当空穴中继介质,同时提高一氧化碳吸附能力,而CoSOH充当终端空穴收集库,促进电荷传输动力学并提高TMCs上的电荷分离。这种独特的界面结构和电荷传输特性赋予TMC/PVA/CoSOH异质结构显著增强的可见光驱动光活性和一氧化碳转化率。基于光催化一氧化碳还原反应过程中探测到的中间体,确定了光催化机理。我们的工作将激发关于介导半导体上电荷转移以实现太阳能碳中和转化的新思路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验