Robins J M, Blevins D
Am J Epidemiol. 1987 Mar;125(3):524-35. doi: 10.1093/oxfordjournals.aje.a114559.
When only proportionate mortality data are available to an investigator studying the effect of an exposure on a particular cause of death, controls must be selected from among persons dying of other causes believed to be uninfluenced by the exposure under study. When qualitative or quantitative estimates of exposure history can be obtained for the deceased individuals, it is shown that one can use logistic regression models for the mortality odds to efficiently estimate the effect of exposure while controlling for relevant confounding factors by incorporating a priori information on baseline mortality rates available from US life tables. The proposed method is used to reanalyze data from a cohort of arsenic-exposed workers in a Montana copper smelter.
当研究暴露因素对特定死因影响的研究者仅能获取成比例死亡率数据时,对照组必须从死于其他被认为不受所研究暴露因素影响的原因的人群中选取。当能够获得已故个体暴露史的定性或定量估计值时,研究表明,通过纳入来自美国生命表的基线死亡率的先验信息,人们可以使用死亡率比值的逻辑回归模型,在控制相关混杂因素的同时有效地估计暴露因素的影响。所提出的方法被用于重新分析蒙大拿州一家铜冶炼厂砷暴露工人队列的数据。