SPO, Université de Montpellier, INRAE, Institut Agro, Montpellier 34060, France.
Lallemand SAS, Blagnac 31702, France.
FEMS Yeast Res. 2024 Jan 9;24. doi: 10.1093/femsyr/foad050.
Saccharomyces cerevisiae requirement for reduced sulfur to synthesize methionine and cysteine during alcoholic fermentation, is mainly fulfilled through the sulfur assimilation pathway. Saccharomyces cerevisiae reduces sulfate into sulfur dioxide (SO2) and sulfide (H2S), whose overproduction is a major issue in winemaking, due to its negative impact on wine aroma. The amount of H2S produced is highly strain-specific and also depends on SO2 concentration, often added to grape must. Applying a bulk segregant analysis to a 96-strain-progeny derived from two strains with different abilities to produce H2S, and comparing allelic frequencies along the genome of pools of segregants producing contrasting H2S quantities, we identified two causative regions involved in H2S production in the presence of SO2. A functional genetic analysis allowed the identification of variants in four genes able to impact H2S formation, viz; ZWF1, ZRT2, SNR2, and YLR125W, and involved in functions and pathways not associated with sulfur metabolism until now. These data point out that, in wine fermentation conditions, redox status, and zinc homeostasis are linked to H2S formation while providing new insights into the regulation of H2S production, and a new vision of the interplay between the sulfur assimilation pathway and cell metabolism.
酿酒酵母在酒精发酵过程中合成蛋氨酸和半胱氨酸所需的还原硫主要通过硫同化途径来满足。酿酒酵母将硫酸盐还原为二氧化硫 (SO2) 和硫化氢 (H2S),其过量生产是酿酒中的一个主要问题,因为它会对葡萄酒的香气产生负面影响。H2S 的产生量高度依赖于菌株特异性,也取决于 SO2 浓度,通常添加到葡萄汁中。我们对源自两个具有不同产生 H2S 能力的菌株的 96 个菌株后代进行了大规模分离群体分析,并比较了在存在 SO2 时产生不同 H2S 量的分离群体的基因组上的等位基因频率,确定了两个与 H2S 产生有关的致病区域。功能遗传分析鉴定了四个能够影响 H2S 形成的基因中的变异体,即 ZWF1、ZRT2、SNR2 和 YLR125W,它们涉及到迄今为止与硫代谢无关的功能和途径。这些数据表明,在葡萄酒发酵条件下,氧化还原状态和锌稳态与 H2S 的形成有关,同时为 H2S 产生的调控提供了新的见解,并为硫同化途径与细胞代谢之间的相互作用提供了新的视角。