Suppr超能文献

对葡萄汁中发现的物种间遗传关系的研究揭示了具有动态基因组结构的种间杂种。

Investigation of Genetic Relationships Between Species Found in Grape Musts Revealed Interspecific Hybrids With Dynamic Genome Structures.

作者信息

Saubin Méline, Devillers Hugo, Proust Lucas, Brier Cathy, Grondin Cécile, Pradal Martine, Legras Jean-Luc, Neuvéglise Cécile

机构信息

Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.

Micalis Institute, INRA, AgroParisTech, CIRM-Levures, Université Paris-Saclay, Jouy-en-Josas, France.

出版信息

Front Microbiol. 2020 Jan 15;10:2960. doi: 10.3389/fmicb.2019.02960. eCollection 2019.

Abstract

, a predominant yeast genus of grape musts, includes sister species recently reported as fast evolving. The aim of this study was to investigate the genetic relationships between the four most closely related species, at the population level. A multi-locus sequence typing strategy based on five markers was applied on 107 strains, confirming the clear delineation of species , and . Huge variations were observed in the level of intraspecific nucleotide diversity, and differences in heterozygosity between species indicate different life styles. No clear population structure was detected based on geographical or substrate origins. Instead, strains clustered into two distinct groups, which may reflect a recent step toward speciation. Interspecific hybrids were detected between and . Their characterization using flow cytometry, karyotypes and genome sequencing showed different genome structures in different ploidy contexts: allodiploids, allotriploids, and allotetraploids. Subculturing of an allotriploid strain revealed chromosome loss equivalent to one chromosome set, followed by an auto-diploidization event, whereas another auto-diploidized tetraploid showed a segmental duplication. Altogether, these results suggest that genomes are not only fast evolving but also highly dynamic.

摘要

是葡萄汁中的主要酵母属,包括最近报道的快速进化的姊妹物种。本研究的目的是在种群水平上研究四个关系最密切的物种之间的遗传关系。基于五个标记的多位点序列分型策略应用于107个菌株,证实了物种的清晰划分。在种内核苷酸多样性水平上观察到巨大差异,物种间杂合性的差异表明不同的生活方式。基于地理或底物来源未检测到明显的种群结构。相反,菌株聚为两个不同的组,这可能反映了最近向物种形成迈进的一步。在和之间检测到种间杂种。使用流式细胞术、核型和基因组测序对它们进行表征,结果表明在不同倍性背景下存在不同的基因组结构:异源二倍体、异源三倍体和异源四倍体。一个异源三倍体菌株的传代培养显示染色体丢失相当于一个染色体组,随后发生了自体二倍体化事件,而另一个自体二倍体化的四倍体显示了片段重复。总之,这些结果表明基因组不仅快速进化而且高度动态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb2a/6974558/e0dae719bd9e/fmicb-10-02960-g001.jpg

相似文献

4
Hanseniaspora uvarum from Winemaking Environments Show Spatial and Temporal Genetic Clustering.
Front Microbiol. 2016 Jan 20;6:1569. doi: 10.3389/fmicb.2015.01569. eCollection 2015.
5
Genome Sequencing and Comparative Analysis of Three Indigenous Wine Strains Reveal Remarkable Biotechnological Potential.
Front Microbiol. 2020 Jan 21;10:3133. doi: 10.3389/fmicb.2019.03133. eCollection 2019.
7
From grape berries to wine: population dynamics of cultivable yeasts associated to "Nero di Troia" autochthonous grape cultivar.
World J Microbiol Biotechnol. 2016 Apr;32(4):59. doi: 10.1007/s11274-016-2017-4. Epub 2016 Feb 29.
8
Genomic and Transcriptomic Basis of Hanseniaspora vineae's Impact on Flavor Diversity and Wine Quality.
Appl Environ Microbiol. 2018 Dec 13;85(1). doi: 10.1128/AEM.01959-18. Print 2019 Jan 1.
9
Persistence of Two Non-Saccharomyces Yeasts (Hanseniaspora and Starmerella) in the Cellar.
Front Microbiol. 2016 Mar 7;7:268. doi: 10.3389/fmicb.2016.00268. eCollection 2016.

引用本文的文献

1
Genetic and phenotypic diversity of wine-associated Hanseniaspora species.
FEMS Yeast Res. 2025 Jan 30;25. doi: 10.1093/femsyr/foaf031.
3
Discovery and identification of a novel yeast species, sp. nov., from in Okinawa, Japan.
Int J Syst Evol Microbiol. 2025 Feb;75(2). doi: 10.1099/ijsem.0.006661.
5
Contributions of species to Pinot Noir microbial terroir in Oregon's Willamette Valley wine region.
Appl Environ Microbiol. 2024 Sep 18;90(9):e0081024. doi: 10.1128/aem.00810-24. Epub 2024 Aug 13.
6
What are the 100 most cited fungal genera?
Stud Mycol. 2024 Jul;108:1-411. doi: 10.3114/sim.2024.108.01. Epub 2024 Jul 15.
7
Copper-based grape pest management has impacted wine aroma.
Sci Rep. 2024 May 2;14(1):10124. doi: 10.1038/s41598-024-60335-9.
8
Genome Analysis of a Newly Discovered Yeast Species, .
J Fungi (Basel). 2024 Feb 28;10(3):180. doi: 10.3390/jof10030180.

本文引用的文献

1
Extensive loss of cell-cycle and DNA repair genes in an ancient lineage of bipolar budding yeasts.
PLoS Biol. 2019 May 21;17(5):e3000255. doi: 10.1371/journal.pbio.3000255. eCollection 2019 May.
5
Investigating the Effect of Selected Non- Species on Wine Ecosystem Function and Major Volatiles.
Front Bioeng Biotechnol. 2018 Nov 13;6:169. doi: 10.3389/fbioe.2018.00169. eCollection 2018.
7
fastp: an ultra-fast all-in-one FASTQ preprocessor.
Bioinformatics. 2018 Sep 1;34(17):i884-i890. doi: 10.1093/bioinformatics/bty560.
8
Tempo and Mode of Genome Evolution in the Budding Yeast Subphylum.
Cell. 2018 Nov 29;175(6):1533-1545.e20. doi: 10.1016/j.cell.2018.10.023. Epub 2018 Nov 8.
9
Yeast-like fungi and yeasts in withered grape carposphere: Characterization of Aureobasidium pullulans population and species diversity.
Int J Food Microbiol. 2019 Jan 16;289:223-230. doi: 10.1016/j.ijfoodmicro.2018.10.023. Epub 2018 Oct 27.
10
sppIDer: A Species Identification Tool to Investigate Hybrid Genomes with High-Throughput Sequencing.
Mol Biol Evol. 2018 Nov 1;35(11):2835-2849. doi: 10.1093/molbev/msy166.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验