Suppr超能文献

肽构象之间靶向自由能扰动的学习映射。

Learned mappings for targeted free energy perturbation between peptide conformations.

作者信息

Willow Soohaeng Yoo, Kang Lulu, Minh David D L

机构信息

Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, USA.

Department of Applied Mathematics, Illinois Institute of Technology, Chicago, Illinois 60616, USA.

出版信息

J Chem Phys. 2023 Sep 28;159(12). doi: 10.1063/5.0164662.

Abstract

Targeted free energy perturbation uses an invertible mapping to promote configuration space overlap and the convergence of free energy estimates. However, developing suitable mappings can be challenging. Wirnsberger et al. [J. Chem. Phys. 153, 144112 (2020)] demonstrated the use of machine learning to train deep neural networks that map between Boltzmann distributions for different thermodynamic states. Here, we adapt their approach to the free energy differences of a flexible bonded molecule, deca-alanine, with harmonic biases and different spring centers. When the neural network is trained until "early stopping"-when the loss value of the test set increases-we calculate accurate free energy differences between thermodynamic states with spring centers separated by 1 Å and sometimes 2 Å. For more distant thermodynamic states, the mapping does not produce structures representative of the target state, and the method does not reproduce reference calculations.

摘要

靶向自由能微扰使用可逆映射来促进构型空间重叠和自由能估计的收敛。然而,开发合适的映射可能具有挑战性。维恩斯伯格等人[《化学物理杂志》153, 144112 (2020)]展示了利用机器学习来训练深度神经网络,该网络可在不同热力学状态的玻尔兹曼分布之间进行映射。在此,我们将他们的方法应用于具有谐性偏差和不同弹簧中心的柔性键合分子十肽丙氨酸的自由能差。当神经网络训练至“提前停止”——即测试集的损失值增加时——我们计算出弹簧中心间距为1 Å有时为2 Å的热力学状态之间的准确自由能差。对于距离更远的热力学状态,该映射无法产生代表目标状态的结构,且该方法无法重现参考计算结果。

相似文献

7
Clusters of classical water models.经典水模型簇。
J Chem Phys. 2009 Nov 28;131(20):204310. doi: 10.1063/1.3266838.
8
Multireference Generalization of the Weighted Thermodynamic Perturbation Method.加权热力学微扰法的多参考推广。
J Phys Chem A. 2022 Nov 17;126(45):8519-8533. doi: 10.1021/acs.jpca.2c06201. Epub 2022 Oct 27.

引用本文的文献

本文引用的文献

1
Skipping the Replica Exchange Ladder with Normalizing Flows.使用归一化流跳过复制交换阶梯
J Phys Chem Lett. 2022 Dec 22;13(50):11643-11649. doi: 10.1021/acs.jpclett.2c03327. Epub 2022 Dec 9.
4
Highly accurate protein structure prediction with AlphaFold.利用 AlphaFold 进行高精度蛋白质结构预测。
Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.
5
DeepBAR: A Fast and Exact Method for Binding Free Energy Computation.DeepBAR:一种快速精确的结合自由能计算方法。
J Phys Chem Lett. 2021 Mar 18;12(10):2509-2515. doi: 10.1021/acs.jpclett.1c00189. Epub 2021 Mar 15.
6
Neural mode jump Monte Carlo.神经模式跳跃蒙特卡罗
J Chem Phys. 2021 Feb 21;154(7):074101. doi: 10.1063/5.0032346.
7
Computing Absolute Free Energy with Deep Generative Models.使用深度生成模型计算绝对自由能。
J Phys Chem B. 2020 Nov 12;124(45):10166-10172. doi: 10.1021/acs.jpcb.0c08645. Epub 2020 Nov 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验