Holbrook Andrew J
UCLA Biostatistics.
J Comput Graph Stat. 2023;32(4):1402-1415. doi: 10.1080/10618600.2023.2195890. Epub 2023 Apr 21.
We propose a novel hybrid quantum computing strategy for parallel MCMC algorithms that generate multiple proposals at each step. This strategy makes the rate-limiting step within parallel MCMC amenable to quantum parallelization by using the Gumbel-max trick to turn the generalized accept-reject step into a discrete optimization problem. When combined with new insights from the parallel MCMC literature, such an approach allows us to embed target density evaluations within a well-known extension of Grover's quantum search algorithm. Letting . In the following, we review the rudiments of quantum computing, quantum search and the Gumbel-max trick in order to elucidate their combination for as wide a readership as possible.
我们提出了一种用于并行MCMC算法的新型混合量子计算策略,该算法在每一步生成多个提议。通过使用Gumbel-max技巧将广义接受-拒绝步骤转化为离散优化问题,此策略使并行MCMC中的速率限制步骤适合量子并行化。当与并行MCMC文献中的新见解相结合时,这种方法使我们能够将目标密度评估嵌入到格罗弗量子搜索算法的一个著名扩展中。设 。接下来,我们回顾量子计算、量子搜索和Gumbel-max技巧的基本原理,以便尽可能广泛的读者群体阐明它们的结合。