Suppr超能文献

通过在碳纳米管内一步串连单个原子和Janus纳米粒子来促进整体水分解的多尺度限域工程

Multiscale Confinement Engineering for Boosting Overall Water Splitting by One-Step Stringing of a Single Atom and a Janus Nanoparticle within a Carbon Nanotube.

作者信息

Quan Quan, Zhang Yuxuan, Li Shaohai, Yip SenPo, Wang Wei, Xie Pengshan, Chen Dong, Wang Weijun, Yin Di, Li Yezhan, Liu Bilu, Ho Johnny C

机构信息

Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China.

Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.

出版信息

ACS Nano. 2024 Jan 9;18(1):1204-1213. doi: 10.1021/acsnano.3c11705. Epub 2023 Dec 21.

Abstract

Enzyme-mimicking confined catalysis has attracted great interest in heterogeneous catalytic systems that can regulate the geometric or electronic structure of the active site and improve its performance. Herein, a liquid-assisted chemical vapor deposition (LCVD) strategy is proposed to simultaneously confine the single-atom Ru sites onto sidewalls and Janus Ni/NiO nanoparticles (NPs) at the apical nanocavities to thoroughly energize the N-doped carbon nanotube arrays (denoted as Ni/NiO@Ru-NC). The bifunctional Ni/NiO@Ru-NC electrocatalyst exhibits overpotentials of 88 and 261 mV for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) at 100 mA cm in alkaline solution, respectively, all ranking the top tier among the carbon-supported metal-based electrocatalysts. Moreover, once integrated into an anion-exchange membrane water electrolysis (AEMWE) system, Ni/NiO@Ru-NC can act as an efficient and robust bifunctional electrocatalyst to operate stably for 50 h under 500 mA cm. Theoretical calculations and experimental exploration demonstrate that the confinement of Ru single atoms and Janus Ni/NiO NPs can regulate the electron distribution with strong orbital couplings to activate the NC nanotube from sidewall to top, thus boosting overall water splitting.

摘要

模拟酶的受限催化在能够调节活性位点几何或电子结构并提高其性能的多相催化体系中引起了极大关注。在此,我们提出了一种液相辅助化学气相沉积(LCVD)策略,将单原子钌位点同时限制在侧壁上,并将Janus Ni/NiO纳米颗粒(NPs)限制在顶端纳米腔中,以充分激发氮掺杂碳纳米管阵列(记为Ni/NiO@Ru-NC)。这种双功能Ni/NiO@Ru-NC电催化剂在碱性溶液中,对于析氢反应(HER)和析氧反应(OER),在100 mA cm时的过电位分别为88和261 mV,在碳负载的金属基电催化剂中均名列前茅。此外,一旦集成到阴离子交换膜水电解(AEMWE)系统中,Ni/NiO@Ru-NC可以作为一种高效且稳健的双功能电催化剂,在500 mA cm下稳定运行50小时。理论计算和实验探索表明,钌单原子和Janus Ni/NiO NPs的受限作用可以通过强轨道耦合调节电子分布,从而从侧壁到顶端激活NC纳米管,进而促进整体水分解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验