文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用增强型框架的 3D 生物矿化基质水凝胶实现宽容和快速的软骨内骨再生。

Tolerant and Rapid Endochondral Bone Regeneration Using Framework-Enhanced 3D Biomineralized Matrix Hydrogels.

机构信息

Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery of Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.

National Tissue Engineering Center of China, Shanghai, 200241, P. R. China.

出版信息

Adv Sci (Weinh). 2024 Mar;11(9):e2305580. doi: 10.1002/advs.202305580. Epub 2023 Dec 21.


DOI:10.1002/advs.202305580
PMID:38127989
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10916654/
Abstract

Tissue-engineered bone has emerged as a promising alternative for bone defect repair due to the advantages of regenerative bone healing and physiological functional reconstruction. However, there is very limited breakthrough in achieving favorable bone regeneration due to the harsh osteogenic microenvironment after bone injury, especially the avascular and hypoxic conditions. Inspired by the bone developmental mode of endochondral ossification, a novel strategy is proposed for tolerant and rapid endochondral bone regeneration using framework-enhanced 3D biomineralized matrix hydrogels. First, it is meticulously designed 3D biomimetic hydrogels with both hypoxic and osteoinductive microenvironment, and then integrated 3D-printed polycaprolactone framework to improve their mechanical strength and structural fidelity. The inherent hypoxic 3D matrix microenvironment effectively activates bone marrow mesenchymal stem cells self-regulation for early-stage chondrogenesis via TGFβ/Smad signaling pathway due to the obstacle of aerobic respiration. Meanwhile, the strong biomineralized microenvironment, created by a hybrid formulation of native-constitute osteogenic inorganic salts, can synergistically regulate both bone mineralization and osteoclastic differentiation, and thus accelerate the late-stage bone maturation. Furthermore, both in vivo ectopic osteogenesis and in situ skull defect repair successfully verified the high efficiency and mechanical maintenance of endochondral bone regeneration mode, which offers a promising treatment for craniofacial bone defect repair.

摘要

组织工程骨因其具有再生骨愈合和生理功能重建的优势,已成为骨缺损修复的一种很有前途的替代方法。然而,由于骨损伤后的成骨微环境恶劣,特别是血运不良和缺氧条件,在实现良好的骨再生方面取得的突破非常有限。受软骨内成骨发育模式的启发,提出了一种使用增强型 3D 生物矿化基质水凝胶实现耐受力和快速软骨内骨再生的新策略。首先,精心设计了具有缺氧和成骨诱导微环境的 3D 仿生水凝胶,然后集成了 3D 打印的聚己内酯框架来提高其机械强度和结构保真度。由于有氧呼吸的障碍,固有缺氧的 3D 基质微环境可通过 TGFβ/Smad 信号通路有效激活骨髓间充质干细胞的自我调节作用,从而促进早期软骨生成。同时,由天然组成的成骨无机盐的混合配方形成的强生物矿化微环境可以协同调节骨矿化和破骨细胞分化,从而加速晚期骨成熟。此外,异位成骨的体内实验和颅骨缺损的原位修复都成功验证了软骨内骨再生模式的高效性和机械维持性,为颅面骨缺损修复提供了一种很有前途的治疗方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c7a/10916654/86b0a366e340/ADVS-11-2305580-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c7a/10916654/06841fb31a32/ADVS-11-2305580-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c7a/10916654/e27e4d55de8d/ADVS-11-2305580-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c7a/10916654/cb5e97429b45/ADVS-11-2305580-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c7a/10916654/baa0102bbfa8/ADVS-11-2305580-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c7a/10916654/0cdb4cfc3a89/ADVS-11-2305580-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c7a/10916654/94a974129cb0/ADVS-11-2305580-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c7a/10916654/21755b25ecf5/ADVS-11-2305580-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c7a/10916654/86b0a366e340/ADVS-11-2305580-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c7a/10916654/06841fb31a32/ADVS-11-2305580-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c7a/10916654/e27e4d55de8d/ADVS-11-2305580-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c7a/10916654/cb5e97429b45/ADVS-11-2305580-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c7a/10916654/baa0102bbfa8/ADVS-11-2305580-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c7a/10916654/0cdb4cfc3a89/ADVS-11-2305580-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c7a/10916654/94a974129cb0/ADVS-11-2305580-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c7a/10916654/21755b25ecf5/ADVS-11-2305580-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c7a/10916654/86b0a366e340/ADVS-11-2305580-g008.jpg

相似文献

[1]
Tolerant and Rapid Endochondral Bone Regeneration Using Framework-Enhanced 3D Biomineralized Matrix Hydrogels.

Adv Sci (Weinh). 2024-3

[2]
Fractionated human adipose tissue as a native biomaterial for the generation of a bone organ by endochondral ossification.

Acta Biomater. 2018-7-4

[3]
Suppressing mesenchymal stem cell hypertrophy and endochondral ossification in 3D cartilage regeneration with nanofibrous poly(l-lactic acid) scaffold and matrilin-3.

Acta Biomater. 2018-6-22

[4]
Evaluation of an Engineered Hybrid Matrix for Bone Regeneration via Endochondral Ossification.

Ann Biomed Eng. 2019-4-29

[5]
Endochondral ossification for enhancing bone regeneration: converging native extracellular matrix biomaterials and developmental engineering in vivo.

Tissue Eng Part B Rev. 2015-6

[6]
Engineering cartilage or endochondral bone: a comparison of different naturally derived hydrogels.

Acta Biomater. 2015-2

[7]
ZIF-8-Modified Multifunctional Bone-Adhesive Hydrogels Promoting Angiogenesis and Osteogenesis for Bone Regeneration.

ACS Appl Mater Interfaces. 2020-8-19

[8]
Off-the-Shelf Biomimetic Graphene Oxide-Collagen Hybrid Scaffolds Wrapped with Osteoinductive Extracellular Matrix for the Repair of Cranial Defects in Rats.

ACS Appl Mater Interfaces. 2018-11-27

[9]
Biomimetic Mineralization of Bone-Like Hydroxyapatite in Hydrogel for the Acceleration of Bone Regeneration.

ACS Appl Mater Interfaces. 2023-1-11

[10]
3D printing of fibre-reinforced cartilaginous templates for the regeneration of osteochondral defects.

Acta Biomater. 2020-9-1

引用本文的文献

[1]
Rapid neuralized and vascularized osteogenesis in infected bone defect using biomimetic biomineralized and antibacterial hydrogels.

Front Bioeng Biotechnol. 2025-5-21

[2]
Screening of molecular markers associated with hornless traits in Qira black sheep.

BMC Genomics. 2025-5-8

[3]
Fabricating oxygen self-supplying 3D printed bioactive hydrogel scaffold for augmented vascularized bone regeneration.

Bioact Mater. 2024-6-14

本文引用的文献

[1]
Bioinspired gradient scaffolds for osteochondral tissue engineering.

Exploration (Beijing). 2023-7-12

[2]
Microneedle system for tissue engineering and regenerative medicine.

Exploration (Beijing). 2023-1-21

[3]
Chromatin reprogramming and bone regeneration in vitro and in vivo via the microtopography-induced constriction of cell nuclei.

Nat Biomed Eng. 2023-11

[4]
Dexamethasone release pattern via a three-dimensional system for effective bone regeneration.

Biomed Mater. 2023-6-14

[5]
Unsaturated bond recognition leads to biased signal in a fatty acid receptor.

Science. 2023-4-7

[6]
Osteoimmunity-regulating biomaterials promote bone regeneration.

Asian J Pharm Sci. 2023-1

[7]
Osteoarthritis: pathogenic signaling pathways and therapeutic targets.

Signal Transduct Target Ther. 2023-2-3

[8]
Genome-wide screen of otosclerosis in population biobanks: 27 loci and shared associations with skeletal structure.

Nat Commun. 2023-1-18

[9]
Senescent cell population with ZEB1 transcription factor as its main regulator promotes osteoarthritis in cartilage and meniscus.

Ann Rheum Dis. 2023-3

[10]
Hypoxia-mimicking scaffolds with controlled release of DMOG and PTHrP to promote cartilage regeneration via the HIF-1α/YAP signaling pathway.

Int J Biol Macromol. 2023-1-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索