文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Fabricating oxygen self-supplying 3D printed bioactive hydrogel scaffold for augmented vascularized bone regeneration.

作者信息

Yang Yang, Wang Wanmeng, Zeng Qianrui, Wang Ning, Li Wenbo, Chen Bo, Guan Qingxin, Li Changyi, Li Wei

机构信息

State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, PR China.

Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, School of Stomatology, Tianjin Medical University, Tianjin, 300071, PR China.

出版信息

Bioact Mater. 2024 Jun 14;40:227-243. doi: 10.1016/j.bioactmat.2024.06.016. eCollection 2024 Oct.


DOI:10.1016/j.bioactmat.2024.06.016
PMID:38973993
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11226730/
Abstract

Limited cells and factors, inadequate mechanical properties, and necrosis of defects center have hindered the wide clinical application of bone-tissue engineering scaffolds. Herein, we construct a self-oxygenated 3D printed bioactive hydrogel scaffold by integrating oxygen-generating nanoparticles and hybrid double network hydrogel structure. The hydrogel scaffold possesses the characteristics of extracellular matrix; Meanwhile, the fabricated hybrid double network structure by polyacrylamide and CaCl-crosslinked sodium carboxymethylcellulose endows the hydrogel favorable compressive strength and 3D printability. Furthermore, the O generated by CaO nanoparticles encapsulated in ZIF-8 releases steadily and sustainably because of the well-developed microporous structure of ZIF-8, which can significantly promote cell viability and proliferation , as well as angiogenesis and osteogenic differentiation with the assistance of Zn. More significantly, the synergy of O and 3D printed pore structure can prevent necrosis of defects center and facilitate cell infiltration by providing cells the nutrients and space they need, which can further induce vascular network ingrowth and accelerate bone regeneration in all areas of the defect . Overall, this work provides a new avenue for preparing cell/factor-free bone-tissue engineered scaffolds that possess great potential for tissue regeneration and clinical alternative.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d66c/11226730/b8014a2f5368/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d66c/11226730/3b3b6c686dfa/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d66c/11226730/1fa33facc90c/sc1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d66c/11226730/d0b8aa799ccb/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d66c/11226730/4dba827b7ad1/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d66c/11226730/f646e9b5fbc9/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d66c/11226730/52f44cc27975/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d66c/11226730/310c26327e72/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d66c/11226730/a712488fbe57/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d66c/11226730/7d7464ed4b8e/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d66c/11226730/ff9a57ce11f9/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d66c/11226730/b8014a2f5368/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d66c/11226730/3b3b6c686dfa/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d66c/11226730/1fa33facc90c/sc1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d66c/11226730/d0b8aa799ccb/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d66c/11226730/4dba827b7ad1/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d66c/11226730/f646e9b5fbc9/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d66c/11226730/52f44cc27975/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d66c/11226730/310c26327e72/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d66c/11226730/a712488fbe57/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d66c/11226730/7d7464ed4b8e/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d66c/11226730/ff9a57ce11f9/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d66c/11226730/b8014a2f5368/gr9.jpg

相似文献

[1]
Fabricating oxygen self-supplying 3D printed bioactive hydrogel scaffold for augmented vascularized bone regeneration.

Bioact Mater. 2024-6-14

[2]
Black phosphorus nanosheets-enabled DNA hydrogel integrating 3D-printed scaffold for promoting vascularized bone regeneration.

Bioact Mater. 2022-8-17

[3]
3D Bioprinting of a Bioactive Composite Scaffold for Cell Delivery in Periodontal Tissue Regeneration.

Biomolecules. 2023-6-30

[4]
Surface engineering of 3D-printed scaffolds with minerals and a pro-angiogenic factor for vascularized bone regeneration.

Acta Biomater. 2022-3-1

[5]
3D Printed Integrated Bionic Oxygenated Scaffold for Bone Regeneration.

ACS Appl Mater Interfaces. 2022-7-6

[6]
A xonotlite nanofiber bioactive 3D-printed hydrogel scaffold based on osteo-/angiogenesis and osteoimmune microenvironment remodeling accelerates vascularized bone regeneration.

J Nanobiotechnology. 2024-2-12

[7]
Control of maleic acid-propylene diepoxide hydrogel for 3D printing application for flexible tissue engineering scaffold with high resolution by end capping and graft polymerization.

Biomater Res. 2022-12-9

[8]
Self-reinforcement hydrogel with sustainable oxygen-supply for enhanced cell ingrowth and potential tissue regeneration.

Biomater Adv. 2022-10

[9]
3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy.

Acta Biomater. 2018-4-13

[10]
Preparation of 3D Printed Chitosan/Polyvinyl Alcohol Double Network Hydrogel Scaffolds.

Macromol Biosci. 2021-4

引用本文的文献

[1]
Advances in Hydrogel-Based Delivery of RNA Drugs for Antitumor Therapy.

Gels. 2025-8-11

[2]
Bone organoid construction and evolution.

J Orthop Translat. 2025-7-3

[3]
In situ 3D bioprinted GDMA/Prussian blue nanozyme hydrogel with wet adhesion promotes macrophage phenotype modulation and intestinal defect repair.

Mater Today Bio. 2025-3-5

[4]
Enhanced Osteogenic Differentiation of hMSCs Using BMP@ZIF-8-Loaded GelMA Nanocomposite Hydrogels with Controlled BMP-2 Release.

ACS Omega. 2025-3-11

本文引用的文献

[1]
Oxygen generating biomaterials at the forefront of regenerative medicine: advances in bone regeneration.

Front Bioeng Biotechnol. 2024-1-12

[2]
Tolerant and Rapid Endochondral Bone Regeneration Using Framework-Enhanced 3D Biomineralized Matrix Hydrogels.

Adv Sci (Weinh). 2024-3

[3]
Revealing the Role of Zinc Ions in Atherosclerosis Therapy via an Engineered Three-Dimensional Pathological Model.

Adv Sci (Weinh). 2023-6

[4]
Oxygen toxicity causes cyclic damage by destabilizing specific Fe-S cluster-containing protein complexes.

Mol Cell. 2023-3-16

[5]
Hyaluronic Acid-Based CuS Nanoenzyme Biodegradable Microneedles for Treating Deep Cutaneous Fungal Infection without Drug Resistance.

Nano Lett. 2023-2-22

[6]
DLP-based bioprinting of void-forming hydrogels for enhanced stem-cell-mediated bone regeneration.

Mater Today Bio. 2022-11-5

[7]
Self-reinforcement hydrogel with sustainable oxygen-supply for enhanced cell ingrowth and potential tissue regeneration.

Biomater Adv. 2022-10

[8]
Exopolysaccharide of Enterococcus faecium L15 promotes the osteogenic differentiation of human dental pulp stem cells via p38 MAPK pathway.

Stem Cell Res Ther. 2022-9-2

[9]
Osteoimmunity-Regulating Biomimetically Hierarchical Scaffold for Augmented Bone Regeneration.

Adv Mater. 2022-9

[10]
Multiscale design of stiffening and ROS scavenging hydrogels for the augmentation of mandibular bone regeneration.

Bioact Mater. 2022-5-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索