Suppr超能文献

基于区域异质性,利用兴趣点(POI)和多源卫星数据集进行中国大陆人口空间化及时空变化研究

Using POI and multisource satellite datasets for mainland China's population spatialization and spatiotemporal changes based on regional heterogeneity.

作者信息

Zhang Jinyu, Zhao Xuesheng

机构信息

College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China.

College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China.

出版信息

Sci Total Environ. 2024 Feb 20;912:169499. doi: 10.1016/j.scitotenv.2023.169499. Epub 2023 Dec 19.

Abstract

Geospatial big data and remote sensing data are widely used in population spatialization studies. However, the relationship between them and population distribution has regional heterogeneity in different geographic contexts. It is necessary to improve data processing methods and spatialization models in areas with large geographical differences. We used land cover data to extract human activity, nighttime light and point-of-interest (POI) data to represent human activity intensity, and considered differences in geographical context to divide mainland China into northern, southern and western regions. We constructed random forest models to generate gridded population distribution datasets with a resolution of 500 m, and quantitatively evaluated the importance of auxiliary data in different geographical contexts. The street-level accuracy assessment showed that our population dataset is more accurate than WorldPop, with a higher R and smaller deviation. The improved datasets provided broad potential for exploring the spatial-temporal changes in grid-level population distribution in China from 2010 to 2020. The results indicated that the population density and settlement area have increased, and the overall pattern of population distribution has remained highly stable, but there are significant differences in population change patterns among cities with different urbanization processes. The importance of the ancillary data to the models varied significantly, with POI contributing the most to the southern region and the least to the western region. Moreover, POI had relatively less influence on model improvement in undeveloped areas. Our study could provide a reference for predicting social and economic spatialized data in different geographical context areas using POI and multisource satellite data.

摘要

地理空间大数据和遥感数据在人口空间化研究中被广泛应用。然而,它们与人口分布之间的关系在不同地理环境下存在区域异质性。在地理差异较大的地区,有必要改进数据处理方法和空间化模型。我们利用土地覆盖数据提取人类活动,利用夜间灯光和兴趣点(POI)数据来表示人类活动强度,并考虑地理环境差异将中国大陆划分为北部、南部和西部地区。我们构建了随机森林模型,生成了分辨率为500米的网格化人口分布数据集,并定量评估了不同地理环境下辅助数据的重要性。街道层面的精度评估表明,我们的人口数据集比世界人口数据集更准确,相关系数R更高,偏差更小。改进后的数据集为探索2010年至2020年中国网格层面人口分布的时空变化提供了广阔潜力。结果表明,人口密度和聚居区面积有所增加,人口分布的总体格局保持高度稳定,但不同城市化进程的城市之间人口变化模式存在显著差异。辅助数据对模型的重要性差异显著,POI对南部地区贡献最大,对西部地区贡献最小。此外,POI在欠发达地区对模型改进的影响相对较小。我们的研究可为利用POI和多源卫星数据预测不同地理环境区域的社会经济空间化数据提供参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验