International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain; Department of Biotechnology and Food Science, University of Burgos, Plaza Misael Bañuelos, s/n, 09001 Burgos, Spain.
International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain; Research Group in Composting (UBUCOMP), University of Burgos, Faculty of Sciences, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain.
N Biotechnol. 2024 Mar 25;79:50-59. doi: 10.1016/j.nbt.2023.12.003. Epub 2023 Dec 19.
Better understanding of macrophyte tolerance under long exposure times in real environmental matrices is crucial for phytoremediation and phytoattenuation strategies for aquatic systems. The metal(loid) attenuation ability of 10 emergent macrophyte species (Carex riparia, Cyperus longus, Cyperus rotundus, Iris pseudacorus, Juncus effusus, Lythrum salicaria, Menta aquatica, Phragmites australis, Scirpus holoschoenus, and Typha angustifolia) was investigated using real groundwater from an industrial site, over a 90-day exposure period. A "phytobial" treatment was included, with 3 plant growth-promoting rhizobacterial strains. Plants exposed to the polluted water generally showed similar or reduced aerial biomass compared to the controls, except for C. riparia. This species, along with M. aquatica, exhibited improved biomass after bioaugmentation. Phytoremediation mechanisms accounted for more than 60% of As, Cd, Cu, Ni, and Pb removal, whilst abiotic mechanisms contributed to ∼80% removal of Fe and Zn. Concentrations of metal(loid)s in the roots were generally between 10-100 times higher than in the aerial parts. The macrophytes in this work can be considered "underground attenuators", more appropriate for rhizostabilization strategies, especially L. salicaria, M. aquatica, S. holoschoenus, and T. angustifolia. For I. pseudacorus, C. longus, and C. riparia; harvesting the aerial parts could be a complementary phytoextraction approach to further remove Pb and Zn. Of all the plants, S. holoschoenus showed the best balance between biomass production and uptake of multiple metal(loid)s. Results also suggest that multiple phytostrategies may be possible for the same plant depending on the final remedial aim. Phytobial approaches need to be further assessed for each macrophyte species.
更好地理解大型植物在实际环境基质中长时间暴露下的耐受性,对于水生系统的植物修复和植物衰减策略至关重要。在 90 天的暴露期内,使用来自工业场地的实际地下水,研究了 10 种挺水植物(菵草、长叶香蒲、矮慈姑、鸢尾、水葱、千屈菜、薄荷、芦苇、香蒲和菖蒲)对金属(类)的衰减能力。包括了一种“植物菌根”处理,使用了 3 种植物促生根际细菌。与对照相比,暴露于受污染水中的植物通常表现出相似或减少的地上生物量,除了菵草。该物种与薄荷一起,在生物增强后表现出改善的生物量。植物修复机制解释了 As、Cd、Cu、Ni 和 Pb 去除的 60%以上,而非生物机制对 Fe 和 Zn 去除的贡献约为 80%。金属(类)在根部的浓度通常比在地上部分高 10-100 倍。在这项工作中,大型植物可以被认为是“地下衰减器”,更适合根稳固定策略,特别是香蒲、薄荷、香蒲和菖蒲。对于鸢尾、长叶香蒲和菵草;收获地上部分可能是进一步去除 Pb 和 Zn 的补充植物提取方法。在所有植物中,香蒲表现出最佳的生物量生产和多种金属(类)吸收之间的平衡。结果还表明,根据最终的修复目标,同一植物可能采用多种植物策略。还需要进一步评估每种大型植物的植物菌根方法。