Suppr超能文献

MLExchange:一个基于网络的平台,可实现用于科学研究的可交换机器学习工作流程。

MLExchange: A web-based platform enabling exchangeable machine learning workflows for scientific studies.

作者信息

Zhao Zhuowen, Chavez Tanny, Holman Elizabeth A, Hao Guanhua, Green Adam, Krishnan Harinarayan, McReynolds Dylan, Pandolfi Ronald J, Roberts Eric J, Zwart Petrus H, Yanxon Howard, Schwarz Nicholas, Sankaranarayanan Subramanian, Kalinin Sergei V, Mehta Apurva, Campbell Stuart I, Hexemer Alexander

机构信息

Advanced Light Source (ALS) Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720.

Center for Advanced Mathematics for Energy Research Applications (CAMERA), Lawrence Berkeley National Laboratory, Berkeley, CA 94720.

出版信息

Annu Workshop Extrem Scale Exp Loop Comput. 2022 Nov;2022:10-15. doi: 10.1109/xloop56614.2022.00007.

Abstract

Machine learning (ML) algorithms are showing a growing trend in helping the scientific communities across different disciplines and institutions to address large and diverse data problems. However, many available ML tools are programmatically demanding and computationally costly. The MLExchange project aims to build a collaborative platform equipped with enabling tools that allow scientists and facility users who do not have a profound ML background to use ML and computational resources in scientific discovery. At the high level, we are targeting a full user experience where managing and exchanging ML algorithms, workflows, and data are readily available through web applications. Since each component is an independent container, the whole platform or its individual service(s) can be easily deployed at servers of different scales, ranging from a personal device (laptop, smart phone, etc.) to high performance clusters (HPC) accessed (simultaneously) by many users. Thus, MLExchange renders flexible using scenarios-users could either access the services and resources from a remote server or run the whole platform or its individual service(s) within their local network.

摘要

机器学习(ML)算法在帮助不同学科和机构的科学界解决大量多样的数据问题方面正呈现出日益增长的趋势。然而,许多现有的ML工具对编程要求很高且计算成本高昂。MLExchange项目旨在构建一个配备支持工具的协作平台,使没有深厚ML背景的科学家和设施用户能够在科学发现中使用ML和计算资源。从高层次来看,我们的目标是实现完整的用户体验,通过Web应用程序可以轻松管理和交换ML算法、工作流程和数据。由于每个组件都是一个独立的容器,整个平台或其单个服务可以轻松部署在不同规模的服务器上,从个人设备(笔记本电脑、智能手机等)到许多用户(同时)访问的高性能集群(HPC)。因此,MLExchange提供了灵活的使用场景——用户既可以从远程服务器访问服务和资源,也可以在其本地网络内运行整个平台或其单个服务。

相似文献

1
MLExchange: A web-based platform enabling exchangeable machine learning workflows for scientific studies.
Annu Workshop Extrem Scale Exp Loop Comput. 2022 Nov;2022:10-15. doi: 10.1109/xloop56614.2022.00007.
2
Deploying Machine Learning Based Segmentation for Scientific Imaging Analysis at Synchrotron Facilities.
IS&T Int Symp Electron Imaging. 2023;35. doi: 10.2352/ei.2023.35.9.ipas-290.
3
Deploying and sharing U-Compare workflows as web services.
J Biomed Semantics. 2013 Feb 18;4(1):7. doi: 10.1186/2041-1480-4-7.
5
JMS: An Open Source Workflow Management System and Web-Based Cluster Front-End for High Performance Computing.
PLoS One. 2015 Aug 17;10(8):e0134273. doi: 10.1371/journal.pone.0134273. eCollection 2015.
6
The open EEGLAB portal Interface: High-Performance computing with EEGLAB.
Neuroimage. 2021 Jan 1;224:116778. doi: 10.1016/j.neuroimage.2020.116778. Epub 2020 Apr 11.
7
Integration of the ImageJ Ecosystem in the KNIME Analytics Platform.
Front Comput Sci. 2020 Mar;2. doi: 10.3389/fcomp.2020.00008. Epub 2020 Mar 17.
8
Closha: bioinformatics workflow system for the analysis of massive sequencing data.
BMC Bioinformatics. 2018 Feb 19;19(Suppl 1):43. doi: 10.1186/s12859-018-2019-3.

引用本文的文献

1
Optimizing inference of segmentation on high-resolution images in MLExchange.
J Supercomput. 2025;81(9):1058. doi: 10.1007/s11227-025-07413-5. Epub 2025 Jun 20.
2
A machine-learning-driven data labeling pipeline for scientific analysis in .
J Appl Crystallogr. 2025 May 12;58(Pt 3):731-745. doi: 10.1107/S1600576725002328. eCollection 2025 Jun 1.
3
DLSIA: Deep Learning for Scientific Image Analysis.
J Appl Crystallogr. 2024 Mar 21;57(Pt 2):392-402. doi: 10.1107/S1600576724001390. eCollection 2024 Apr 1.
4
Deploying Machine Learning Based Segmentation for Scientific Imaging Analysis at Synchrotron Facilities.
IS&T Int Symp Electron Imaging. 2023;35. doi: 10.2352/ei.2023.35.9.ipas-290.
5
Emerging Trends in Machine Learning: A Polymer Perspective.
ACS Polym Au. 2023 Jan 18;3(3):239-258. doi: 10.1021/acspolymersau.2c00053. eCollection 2023 Jun 14.

本文引用的文献

1
Artifact identification in X-ray diffraction data using machine learning methods.
J Synchrotron Radiat. 2023 Jan 1;30(Pt 1):137-146. doi: 10.1107/S1600577522011274.
2
A comparison of deep-learning-based inpainting techniques for experimental X-ray scattering.
J Appl Crystallogr. 2022 Sep 28;55(Pt 5):1277-1288. doi: 10.1107/S1600576722007105. eCollection 2022 Oct 1.
3
The design of a data management system at HEPS.
J Synchrotron Radiat. 2021 Jan 1;28(Pt 1):169-175. doi: 10.1107/S1600577520015167.
4
A mixed-scale dense convolutional neural network for image analysis.
Proc Natl Acad Sci U S A. 2018 Jan 9;115(2):254-259. doi: 10.1073/pnas.1715832114. Epub 2017 Dec 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验