Zhao Zhuowen, Chavez Tanny, Holman Elizabeth A, Hao Guanhua, Green Adam, Krishnan Harinarayan, McReynolds Dylan, Pandolfi Ronald J, Roberts Eric J, Zwart Petrus H, Yanxon Howard, Schwarz Nicholas, Sankaranarayanan Subramanian, Kalinin Sergei V, Mehta Apurva, Campbell Stuart I, Hexemer Alexander
Advanced Light Source (ALS) Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720.
Center for Advanced Mathematics for Energy Research Applications (CAMERA), Lawrence Berkeley National Laboratory, Berkeley, CA 94720.
Annu Workshop Extrem Scale Exp Loop Comput. 2022 Nov;2022:10-15. doi: 10.1109/xloop56614.2022.00007.
Machine learning (ML) algorithms are showing a growing trend in helping the scientific communities across different disciplines and institutions to address large and diverse data problems. However, many available ML tools are programmatically demanding and computationally costly. The MLExchange project aims to build a collaborative platform equipped with enabling tools that allow scientists and facility users who do not have a profound ML background to use ML and computational resources in scientific discovery. At the high level, we are targeting a full user experience where managing and exchanging ML algorithms, workflows, and data are readily available through web applications. Since each component is an independent container, the whole platform or its individual service(s) can be easily deployed at servers of different scales, ranging from a personal device (laptop, smart phone, etc.) to high performance clusters (HPC) accessed (simultaneously) by many users. Thus, MLExchange renders flexible using scenarios-users could either access the services and resources from a remote server or run the whole platform or its individual service(s) within their local network.
机器学习(ML)算法在帮助不同学科和机构的科学界解决大量多样的数据问题方面正呈现出日益增长的趋势。然而,许多现有的ML工具对编程要求很高且计算成本高昂。MLExchange项目旨在构建一个配备支持工具的协作平台,使没有深厚ML背景的科学家和设施用户能够在科学发现中使用ML和计算资源。从高层次来看,我们的目标是实现完整的用户体验,通过Web应用程序可以轻松管理和交换ML算法、工作流程和数据。由于每个组件都是一个独立的容器,整个平台或其单个服务可以轻松部署在不同规模的服务器上,从个人设备(笔记本电脑、智能手机等)到许多用户(同时)访问的高性能集群(HPC)。因此,MLExchange提供了灵活的使用场景——用户既可以从远程服务器访问服务和资源,也可以在其本地网络内运行整个平台或其单个服务。