Suppr超能文献

一种用于图像分析的混合尺度密集卷积神经网络。

A mixed-scale dense convolutional neural network for image analysis.

机构信息

Center for Applied Mathematics for Energy Research Applications, Lawrence Berkeley National Laboratory, Berkeley, CA 94720.

Center for Applied Mathematics for Energy Research Applications, Lawrence Berkeley National Laboratory, Berkeley, CA 94720;

出版信息

Proc Natl Acad Sci U S A. 2018 Jan 9;115(2):254-259. doi: 10.1073/pnas.1715832114. Epub 2017 Dec 26.

Abstract

Deep convolutional neural networks have been successfully applied to many image-processing problems in recent works. Popular network architectures often add additional operations and connections to the standard architecture to enable training deeper networks. To achieve accurate results in practice, a large number of trainable parameters are often required. Here, we introduce a network architecture based on using dilated convolutions to capture features at different image scales and densely connecting all feature maps with each other. The resulting architecture is able to achieve accurate results with relatively few parameters and consists of a single set of operations, making it easier to implement, train, and apply in practice, and automatically adapts to different problems. We compare results of the proposed network architecture with popular existing architectures for several segmentation problems, showing that the proposed architecture is able to achieve accurate results with fewer parameters, with a reduced risk of overfitting the training data.

摘要

深度卷积神经网络在最近的研究中已经成功应用于许多图像处理问题。流行的网络架构通常会在标准架构中添加额外的操作和连接,以实现更深层次的网络训练。为了在实践中获得准确的结果,通常需要大量的可训练参数。在这里,我们介绍一种基于使用扩张卷积来捕获不同图像尺度特征的网络架构,并将所有特征图密集地连接在一起。所得到的架构可以用相对较少的参数实现准确的结果,并且只包含一组操作,使得它更容易在实践中实现、训练和应用,并且能够自动适应不同的问题。我们将所提出的网络架构的结果与几个分割问题的现有流行架构进行了比较,结果表明,所提出的架构能够用较少的参数实现准确的结果,并且降低了过拟合训练数据的风险。

相似文献

1
A mixed-scale dense convolutional neural network for image analysis.一种用于图像分析的混合尺度密集卷积神经网络。
Proc Natl Acad Sci U S A. 2018 Jan 9;115(2):254-259. doi: 10.1073/pnas.1715832114. Epub 2017 Dec 26.
5
Toolkits and Libraries for Deep Learning.深度学习的工具包和库。
J Digit Imaging. 2017 Aug;30(4):400-405. doi: 10.1007/s10278-017-9965-6.
7
PyDiNet: Pyramid Dilated Network for medical image segmentation.PyDiNet:用于医学图像分割的金字塔扩张网络。
Neural Netw. 2021 Aug;140:274-281. doi: 10.1016/j.neunet.2021.03.023. Epub 2021 Mar 26.
9
Overview of deep learning in medical imaging.医学成像中的深度学习概述。
Radiol Phys Technol. 2017 Sep;10(3):257-273. doi: 10.1007/s12194-017-0406-5. Epub 2017 Jul 8.
10
Differential convolutional neural network.差异卷积神经网络。
Neural Netw. 2019 Aug;116:279-287. doi: 10.1016/j.neunet.2019.04.025. Epub 2019 May 10.

引用本文的文献

10
DLSIA: Deep Learning for Scientific Image Analysis.DLSIA:用于科学图像分析的深度学习
J Appl Crystallogr. 2024 Mar 21;57(Pt 2):392-402. doi: 10.1107/S1600576724001390. eCollection 2024 Apr 1.

本文引用的文献

1
Fully Convolutional Networks for Semantic Segmentation.全卷积网络用于语义分割。
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24.
2
Deep learning.深度学习。
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验