Suppr超能文献

扑翼昆虫翅膀弯曲过程中的静脉-膜相互作用

Vein-Membrane Interaction in Cambering of Flapping Insect Wings.

作者信息

Ishihara Daisuke, Onishi Minato, Sugikawa Kaede

机构信息

Department of Intelligent and Control Systems, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka 820-8502, Fukuoka, Japan.

出版信息

Biomimetics (Basel). 2023 Nov 27;8(8):571. doi: 10.3390/biomimetics8080571.

Abstract

It is still unclear how elastic deformation of flapping insect wings caused by the aerodynamic pressure results in their significant cambering. In this study, we present that a vein-membrane interaction (VMI) can clarify this mechanical process. In order to investigate the VMI, we propose a numerical method that consists of (a) a shape simplification model wing that consists of a few beams and a rectangular shell structure as the structural essence of flapping insect wings for the VMI, and (b) a monolithic solution procedure for strongly coupled beam and shell structures with large deformation and large rotation to analyze the shape simplification model wing. We incorporate data from actual insects into the proposed numerical method for the VMI. In the numerical analysis, we demonstrate that the model wing can generate a camber equivalent to that of the actual insects. Hence, the VMI will be a mechanical basis of the cambering of flapping insect wings. Furthermore, we present the mechanical roles of the veins in cambering. The intermediate veins increase the out-of-plane deflection of the wing membrane due to the aerodynamic pressure in the central area of the wing, while they decrease it in the vicinity of the trailing edge. As a result, these veins create the significant camber. The torsional flexibility of the leading-edge veins increases the magnitude of cambering.

摘要

目前尚不清楚由空气动力压力引起的扑翼昆虫翅膀的弹性变形是如何导致其显著弯曲的。在本研究中,我们提出静脉 - 膜相互作用(VMI)可以阐明这一力学过程。为了研究VMI,我们提出了一种数值方法,该方法包括:(a)一个形状简化模型翅膀,它由几根梁和一个矩形壳结构组成,作为扑翼昆虫翅膀用于VMI的结构本质;(b)一种用于分析形状简化模型翅膀的、针对大变形和大旋转的强耦合梁和壳结构的整体求解程序。我们将来自实际昆虫的数据纳入所提出的用于VMI的数值方法中。在数值分析中,我们证明模型翅膀能够产生与实际昆虫相当的弯曲。因此,VMI将成为扑翼昆虫翅膀弯曲的力学基础。此外,我们还展示了静脉在弯曲过程中的力学作用。中间静脉由于翅膀中心区域的空气动力压力而增加了翼膜的面外挠度,而在靠近后缘的区域则使其减小。结果,这些静脉产生了显著的弯曲。前缘静脉的扭转灵活性增加了弯曲的程度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94aa/10741490/c62c8c803df9/biomimetics-08-00571-g001.jpg

相似文献

1
Vein-Membrane Interaction in Cambering of Flapping Insect Wings.
Biomimetics (Basel). 2023 Nov 27;8(8):571. doi: 10.3390/biomimetics8080571.
2
Novel Computational Design of Polymer Micromachined Insect-Mimetic Wings for Flapping-Wing Nano Air Vehicles.
Biomimetics (Basel). 2024 Feb 22;9(3):133. doi: 10.3390/biomimetics9030133.
3
Aerodynamic effects of flexibility in flapping wings.
J R Soc Interface. 2010 Mar 6;7(44):485-97. doi: 10.1098/rsif.2009.0200. Epub 2009 Aug 19.
4
Aeroelastic characterisation of a bio-inspired flapping membrane wing.
Bioinspir Biomim. 2022 Sep 13;17(6). doi: 10.1088/1748-3190/ac8632.
5
A new torsion control mechanism induced by blood circulation in dragonfly wings.
Bioinspir Biomim. 2015 Feb 6;10(1):016020. doi: 10.1088/1748-3190/10/1/016020.
6
Flexible flapping wings with self-organized microwrinkles.
Bioinspir Biomim. 2015 Jun 29;10(4):046005. doi: 10.1088/1748-3190/10/4/046005.
7
Modulation of leading edge vorticity and aerodynamic forces in flexible flapping wings.
Bioinspir Biomim. 2011 Sep;6(3):036007. doi: 10.1088/1748-3182/6/3/036007. Epub 2011 Aug 19.
8
Allometry of wing twist and camber in a flower chafer during free flight: How do wing deformations scale with body size?
R Soc Open Sci. 2017 Oct 18;4(10):171152. doi: 10.1098/rsos.171152. eCollection 2017 Oct.
9
Three-dimensional wing structure attenuates aerodynamic efficiency in flapping fly wings.
J R Soc Interface. 2020 Mar;17(164):20190804. doi: 10.1098/rsif.2019.0804. Epub 2020 Mar 11.
10
Passive mechanism of pitch recoil in flapping insect wings.
Bioinspir Biomim. 2016 Dec 20;12(1):016008. doi: 10.1088/1748-3190/12/1/016008.

引用本文的文献

1
Morphological constraints in hymenopteran forewings limit flight efficiency optimization.
R Soc Open Sci. 2025 Jul 16;12(7):250224. doi: 10.1098/rsos.250224. eCollection 2025 Jul.
2
Investigating the Mechanical Performance of Bionic Wings Based on the Flapping Kinematics of Beetle Hindwings.
Biomimetics (Basel). 2024 Jun 6;9(6):343. doi: 10.3390/biomimetics9060343.
3
Novel Computational Design of Polymer Micromachined Insect-Mimetic Wings for Flapping-Wing Nano Air Vehicles.
Biomimetics (Basel). 2024 Feb 22;9(3):133. doi: 10.3390/biomimetics9030133.

本文引用的文献

1
Novel flight style and light wings boost flight performance of tiny beetles.
Nature. 2022 Feb;602(7895):96-100. doi: 10.1038/s41586-021-04303-7. Epub 2022 Jan 19.
2
The Geometry and Mechanics of Insect Wing Deformations in Flight: A Modelling Approach.
Insects. 2020 Jul 17;11(7):446. doi: 10.3390/insects11070446.
3
Structure and tensile properties of the forewing costal vein of the honeybee Apis mellifera.
Soft Matter. 2020 Apr 29;16(16):4057-4064. doi: 10.1039/c9sm02364j.
4
Structure, properties and functions of the forewing-hindwing coupling of honeybees.
J Insect Physiol. 2019 Oct;118:103936. doi: 10.1016/j.jinsphys.2019.103936. Epub 2019 Aug 29.
5
A simple developmental model recapitulates complex insect wing venation patterns.
Proc Natl Acad Sci U S A. 2018 Oct 2;115(40):9905-9910. doi: 10.1073/pnas.1721248115. Epub 2018 Sep 17.
6
Dragonfly wing nodus: A one-way hinge contributing to the asymmetric wing deformation.
Acta Biomater. 2017 Sep 15;60:330-338. doi: 10.1016/j.actbio.2017.07.034. Epub 2017 Jul 22.
7
Passive mechanism of pitch recoil in flapping insect wings.
Bioinspir Biomim. 2016 Dec 20;12(1):016008. doi: 10.1088/1748-3190/12/1/016008.
8
Neural control and precision of flight muscle activation in Drosophila.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2017 Jan;203(1):1-14. doi: 10.1007/s00359-016-1133-9. Epub 2016 Dec 9.
9
Biomechanics and biomimetics in insect-inspired flight systems.
Philos Trans R Soc Lond B Biol Sci. 2016 Sep 26;371(1704). doi: 10.1098/rstb.2015.0390.
10
Aerodynamics, sensing and control of insect-scale flapping-wing flight.
Proc Math Phys Eng Sci. 2016 Feb;472(2186):20150712. doi: 10.1098/rspa.2015.0712.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验