Suppr超能文献

一个简单的发育模型再现了复杂的昆虫翅膀脉序模式。

A simple developmental model recapitulates complex insect wing venation patterns.

机构信息

Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138.

Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637;

出版信息

Proc Natl Acad Sci U S A. 2018 Oct 2;115(40):9905-9910. doi: 10.1073/pnas.1721248115. Epub 2018 Sep 17.

Abstract

Insect wings are typically supported by thickened struts called veins. These veins form diverse geometric patterns across insects. For many insect species, even the left and right wings from the same individual have veins with unique topological arrangements, and little is known about how these patterns form. We present a large-scale quantitative study of the fingerprint-like "secondary veins." We compile a dataset of wings from 232 species and 17 families from the order Odonata (dragonflies and damselflies), a group with particularly elaborate vein patterns. We characterize the geometric arrangements of veins and develop a simple model of secondary vein patterning. We show that our model is capable of recapitulating the vein geometries of species from other, distantly related winged insect clades.

摘要

昆虫的翅膀通常由称为翅脉的加厚支柱支撑。这些翅脉在昆虫中形成各种不同的几何图案。对于许多昆虫物种,即使是来自同一个体的左右翅膀,其翅脉也具有独特的拓扑排列,而对于这些模式如何形成,人们知之甚少。我们对指纹状的“二级脉”进行了大规模的定量研究。我们编译了一个来自 232 个物种和 17 个科的数据集,这些物种来自蜻蜓目(蜻蜓和豆娘目),这是一个具有特别精细的翅脉模式的群体。我们描述了翅脉的几何排列,并开发了一个二级脉模式的简单模型。我们表明,我们的模型能够重现来自其他远缘翅类昆虫的物种的脉几何形状。

相似文献

1
A simple developmental model recapitulates complex insect wing venation patterns.
Proc Natl Acad Sci U S A. 2018 Oct 2;115(40):9905-9910. doi: 10.1073/pnas.1721248115. Epub 2018 Sep 17.
2
Basal Complex and Basal Venation of Odonata Wings: Structural Diversity and Potential Role in the Wing Deformation.
PLoS One. 2016 Aug 11;11(8):e0160610. doi: 10.1371/journal.pone.0160610. eCollection 2016.
3
5
The damping and structural properties of dragonfly and damselfly wings during dynamic movement.
Commun Biol. 2021 Jun 15;4(1):737. doi: 10.1038/s42003-021-02263-2.
6
Experimental method for 3D reconstruction of Odonata wings (methodology and dataset).
PLoS One. 2020 Apr 29;15(4):e0232193. doi: 10.1371/journal.pone.0232193. eCollection 2020.
8
Allometric Scaling Reveals Evolutionary Constraint on Odonata Wing Cellularity via Critical Crack Length.
Adv Sci (Weinh). 2024 Jun;11(23):e2400844. doi: 10.1002/advs.202400844. Epub 2024 Apr 13.
9
Flexural stiffness in insect wings. I. Scaling and the influence of wing venation.
J Exp Biol. 2003 Sep;206(Pt 17):2979-87. doi: 10.1242/jeb.00523.
10
The thorax musculature of Anisoptera (Insecta: Odonata) nymphs and its evolutionary relevance.
BMC Evol Biol. 2013 Nov 1;13:237. doi: 10.1186/1471-2148-13-237.

引用本文的文献

2
Allometric Scaling Reveals Evolutionary Constraint on Odonata Wing Cellularity via Critical Crack Length.
Adv Sci (Weinh). 2024 Jun;11(23):e2400844. doi: 10.1002/advs.202400844. Epub 2024 Apr 13.
3
Vein-Membrane Interaction in Cambering of Flapping Insect Wings.
Biomimetics (Basel). 2023 Nov 27;8(8):571. doi: 10.3390/biomimetics8080571.
4
Golden ratio in venation patterns of dragonfly wings.
Sci Rep. 2023 May 15;13(1):7820. doi: 10.1038/s41598-023-34880-8.
5
Dragonfly-Inspired Wing Design Enabled by Machine Learning and Maxwell's Reciprocal Diagrams.
Adv Sci (Weinh). 2023 Jun;10(18):e2207635. doi: 10.1002/advs.202207635. Epub 2023 Apr 29.
7
Hexagonal Voronoi pattern detected in the microstructural design of the echinoid skeleton.
J R Soc Interface. 2022 Aug;19(193):20220226. doi: 10.1098/rsif.2022.0226. Epub 2022 Aug 10.
8
Insect wing 3D printing.
Sci Rep. 2021 Oct 14;11(1):18631. doi: 10.1038/s41598-021-98242-y.
9
Computational analysis of size, shape and structure of insect wings.
Biol Open. 2019 Oct 18;8(10):bio040774. doi: 10.1242/bio.040774.

本文引用的文献

1
Molecules, morphology and fossils: a comprehensive approach to odonate phylogeny and the evolution of the odonate wing.
Cladistics. 2008 Aug;24(4):477-514. doi: 10.1111/j.1096-0031.2007.00191.x. Epub 2008 Jan 24.
4
Beyond the wing planform: morphological differentiation between migratory and nonmigratory dragonfly species.
J Evol Biol. 2016 Apr;29(4):690-703. doi: 10.1111/jeb.12830. Epub 2016 Feb 6.
5
Fundamental physical cellular constraints drive self-organization of tissues.
EMBO J. 2016 Jan 4;35(1):77-88. doi: 10.15252/embj.201592374. Epub 2015 Nov 23.
7
Finding our way through phenotypes.
PLoS Biol. 2015 Jan 6;13(1):e1002033. doi: 10.1371/journal.pbio.1002033. eCollection 2015 Jan.
8
Numerical investigation of insect wing fracture behaviour.
J Biomech. 2015 Jan 2;48(1):89-94. doi: 10.1016/j.jbiomech.2014.10.037. Epub 2014 Nov 12.
9
Phylogenomics resolves the timing and pattern of insect evolution.
Science. 2014 Nov 7;346(6210):763-7. doi: 10.1126/science.1257570. Epub 2014 Nov 6.
10
Control of moth flight posture is mediated by wing mechanosensory feedback.
J Exp Biol. 2014 Jul 1;217(Pt 13):2301-8. doi: 10.1242/jeb.103770. Epub 2014 Apr 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验