Suppr超能文献

基于遗传算法的神经网络在湿波状翅片辐射-对流换热中的进化计算

Evolutionary Computing for the Radiative-Convective Heat Transfer of a Wetted Wavy Fin Using a Genetic Algorithm-Based Neural Network.

作者信息

Poornima B S, Sarris Ioannis E, Chandan K, Nagaraja K V, Kumar R S Varun, Ben Ahmed Samia

机构信息

Department of Mathematics, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Bengaluru 560035, Karnataka, India.

Department of Mechanical Engineering, University of West Attica, 12244 Athens, Greece.

出版信息

Biomimetics (Basel). 2023 Dec 1;8(8):574. doi: 10.3390/biomimetics8080574.

Abstract

Evolutionary algorithms are a large class of optimization techniques inspired by the ideas of natural selection, and can be employed to address challenging problems. These algorithms iteratively evolve populations using crossover, which combines genetic information from two parent solutions, and mutation, which adds random changes. This iterative process tends to produce effective solutions. Inspired by this, the current study presents the results of thermal variation on the surface of a wetted wavy fin using a genetic algorithm in the context of parameter estimation for artificial neural network models. The physical features of convective and radiative heat transfer during wet surface conditions are also considered to develop the model. The highly nonlinear governing ordinary differential equation of the proposed fin problem is transmuted into a dimensionless equation. The graphical outcomes of the aspects of the thermal profile are demonstrated for specific non-dimensional variables. The primary observation of the current study is a decrease in temperature profile with a rise in wet parameters and convective-conductive parameters. The implemented genetic algorithm offers a powerful optimization technique that can effectively tune the parameters of the artificial neural network, leading to an enhanced predictive accuracy and convergence with the numerically obtained solution.

摘要

进化算法是一类受自然选择思想启发的优化技术,可用于解决具有挑战性的问题。这些算法使用交叉(将两个父代解的遗传信息相结合)和变异(添加随机变化)来迭代地进化种群。这个迭代过程往往会产生有效的解决方案。受此启发,本研究在人工神经网络模型的参数估计背景下,使用遗传算法展示了湿波纹翅片表面热变化的结果。在建立模型时,还考虑了湿表面条件下对流和辐射传热的物理特征。所提出的翅片问题的高度非线性控制常微分方程被转化为无量纲方程。针对特定的无量纲变量,展示了热分布方面的图形结果。本研究的主要观察结果是,随着湿参数和对流 - 传导参数的增加,温度分布降低。所实施的遗传算法提供了一种强大的优化技术,能够有效地调整人工神经网络的参数,从而提高预测精度并与数值解收敛。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验