Koziel S, Michalewicz Z
Department of Electronics, Telecommunication and Informatics, Technical University of Gdańsk, Narutowicza 11/12, 80-952, Gdańsk, Poland.
Evol Comput. 1999 Spring;7(1):19-44. doi: 10.1162/evco.1999.7.1.19.
During the last five years, several methods have been proposed for handling nonlinear constraints using evolutionary algorithms (EAs) for numerical optimization problems. Recent survey papers classify these methods into four categories: preservation of feasibility, penalty functions, searching for feasibility, and other hybrids. In this paper we investigate a new approach for solving constrained numerical optimization problems which incorporates a homomorphous mapping between n-dimensional cube and a feasible search space. This approach constitutes an example of the fifth decoder-based category of constraint handling techniques. We demonstrate the power of this new approach on several test cases and discuss its further potential.
在过去五年中,已经提出了几种使用进化算法(EA)来处理数值优化问题中的非线性约束的方法。最近的综述论文将这些方法分为四类:可行性保留、惩罚函数、可行性搜索以及其他混合方法。在本文中,我们研究了一种求解约束数值优化问题的新方法,该方法在n维立方体和可行搜索空间之间引入了同态映射。这种方法构成了基于解码器的第五类约束处理技术的一个示例。我们在几个测试案例上展示了这种新方法的强大功能,并讨论了其进一步的潜力。