Suppr超能文献

进化算法、同态映射与约束参数优化

Evolutionary algorithms, homomorphous mappings, and constrained parameter optimization.

作者信息

Koziel S, Michalewicz Z

机构信息

Department of Electronics, Telecommunication and Informatics, Technical University of Gdańsk, Narutowicza 11/12, 80-952, Gdańsk, Poland.

出版信息

Evol Comput. 1999 Spring;7(1):19-44. doi: 10.1162/evco.1999.7.1.19.

Abstract

During the last five years, several methods have been proposed for handling nonlinear constraints using evolutionary algorithms (EAs) for numerical optimization problems. Recent survey papers classify these methods into four categories: preservation of feasibility, penalty functions, searching for feasibility, and other hybrids. In this paper we investigate a new approach for solving constrained numerical optimization problems which incorporates a homomorphous mapping between n-dimensional cube and a feasible search space. This approach constitutes an example of the fifth decoder-based category of constraint handling techniques. We demonstrate the power of this new approach on several test cases and discuss its further potential.

摘要

在过去五年中,已经提出了几种使用进化算法(EA)来处理数值优化问题中的非线性约束的方法。最近的综述论文将这些方法分为四类:可行性保留、惩罚函数、可行性搜索以及其他混合方法。在本文中,我们研究了一种求解约束数值优化问题的新方法,该方法在n维立方体和可行搜索空间之间引入了同态映射。这种方法构成了基于解码器的第五类约束处理技术的一个示例。我们在几个测试案例上展示了这种新方法的强大功能,并讨论了其进一步的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验