Suppr超能文献

用于神经影像数据分类的脑启发式时空关联记忆:脑电图和功能磁共振成像

Brain-Inspired Spatio-Temporal Associative Memories for Neuroimaging Data Classification: EEG and fMRI.

作者信息

Kasabov Nikola K, Bahrami Helena, Doborjeh Maryam, Wang Alan

机构信息

Knowledge Engineering and Discovery Research Innovation, School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland 1010, New Zealand.

Intelligent Systems Research Center, University of Ulster, Londonderry BT48 7JL, UK.

出版信息

Bioengineering (Basel). 2023 Nov 21;10(12):1341. doi: 10.3390/bioengineering10121341.

Abstract

Humans learn from a lot of information sources to make decisions. Once this information is learned in the brain, spatio-temporal associations are made, connecting all these sources (variables) in space and time represented as brain connectivity. In reality, to make a decision, we usually have only part of the information, either as a limited number of variables, limited time to make the decision, or both. The brain functions as a spatio-temporal associative memory. Inspired by the ability of the human brain, a brain-inspired spatio-temporal associative memory was proposed earlier that utilized the NeuCube brain-inspired spiking neural network framework. Here we applied the STAM framework to develop STAM for neuroimaging data, on the cases of EEG and fMRI, resulting in STAM-EEG and STAM-fMRI. This paper showed that once a NeuCube STAM classification model was trained on a complete spatio-temporal EEG or fMRI data, it could be recalled using only part of the time series, or/and only part of the used variables. We evaluated both temporal and spatial association and generalization accuracy accordingly. This was a pilot study that opens the field for the development of classification systems on other neuroimaging data, such as longitudinal MRI data, trained on complete data but recalled on partial data. Future research includes STAM that will work on data, collected across different settings, in different labs and clinics, that may vary in terms of the variables and time of data collection, along with other parameters. The proposed STAM will be further investigated for early diagnosis and prognosis of brain conditions and for diagnostic/prognostic marker discovery.

摘要

人类从大量信息源中学习以做出决策。一旦这些信息在大脑中被学习,就会形成时空关联,将所有这些以大脑连通性表示的信息源(变量)在空间和时间上连接起来。实际上,为了做出决策,我们通常只有部分信息,要么是变量数量有限,要么是做决策的时间有限,或者两者皆有。大脑起着时空关联记忆的作用。受人类大脑能力的启发,早期提出了一种受大脑启发的时空关联记忆,它利用了NeuCube受大脑启发的脉冲神经网络框架。在这里,我们应用STAM框架针对脑电图(EEG)和功能磁共振成像(fMRI)案例开发用于神经影像数据的STAM,从而得到STAM - EEG和STAM - fMRI。本文表明,一旦在完整的时空EEG或fMRI数据上训练了NeuCube STAM分类模型,就可以仅使用部分时间序列或/和仅部分已使用的变量来进行调用。我们据此评估了时间和空间关联以及泛化准确性。这是一项初步研究,为基于其他神经影像数据(如纵向MRI数据)开发分类系统开辟了领域,这些分类系统在完整数据上进行训练,但在部分数据上进行调用。未来的研究包括STAM将处理在不同实验室和诊所的不同环境中收集的数据,这些数据在变量、数据收集时间以及其他参数方面可能会有所不同。所提出的STAM将进一步用于脑部疾病的早期诊断和预后以及诊断/预后标志物的发现研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3999/10741022/4c72b9befb6f/bioengineering-10-01341-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验