Suppr超能文献

使用 NeuCube 对时空信号进行分类和回归及其在 SpiNNaker 神经形态硬件上的实现。

Classification and regression of spatio-temporal signals using NeuCube and its realization on SpiNNaker neuromorphic hardware.

机构信息

Department of Mechanical Engineering, Technical University of Munich, Munich, Germany.

出版信息

J Neural Eng. 2019 Apr;16(2):026014. doi: 10.1088/1741-2552/aafabc. Epub 2018 Dec 21.

Abstract

OBJECTIVE

The objective of this work is to use the capability of spiking neural networks to capture the spatio-temporal information encoded in time-series signals and decode them without the use of hand-crafted features and vector-based learning and the realization of the spiking model on low-power neuromorphic hardware.

APPROACH

The NeuCube spiking model was used to classify different grasp movements directly from raw surface electromyography signals (sEMG), the estimations of the applied finger forces as well as the classification of two motor imagery movements from raw electroencephalography (EEG). In a parallel investigation, the designed spiking decoder was implemented on SpiNNaker neuromorphic hardware, which allows low-energy real-time processing.

MAIN RESULTS

Experimental results reveal a better classification accuracy using the NeuCube model compared to traditional machine learning methods. For sEMG classification, we reached a training accuracy of 85% and a test accuracy of 84.8%, as well as less than 19% of relative root mean square error (rRMSE) when estimating finger forces from six subjects. For the EEG classification, a mean accuracy of 75% was obtained when tested on raw EEG data from nine subjects from the existing 2b dataset from 'BCI competition IV'.

SIGNIFICANCE

This work provides a proof of concept for a successful implementation of the NeuCube spiking model on the SpiNNaker neuromorphic platform for raw sEMG and EEG decoding, which could chart a route ahead for a new generation of portable closed-loop and low-power neuroprostheses.

摘要

目的

本工作旨在利用尖峰神经网络的能力来捕获时间序列信号中编码的时空信息,并在不使用手工制作的特征和基于向量的学习的情况下对其进行解码,并在低功耗神经形态硬件上实现尖峰模型。

方法

使用 NeuCube 尖峰模型直接从原始表面肌电图信号 (sEMG) 对不同的抓握动作进行分类,估计施加的手指力以及从原始脑电图 (EEG) 对两种运动想象动作进行分类。在并行研究中,设计的尖峰解码器在 SpiNNaker 神经形态硬件上实现,允许低能量实时处理。

主要结果

实验结果表明,与传统机器学习方法相比,NeuCube 模型的分类精度更高。对于 sEMG 分类,我们从六位受试者获得了 85%的训练精度和 84.8%的测试精度,以及不到 19%的相对均方根误差 (rRMSE) 来估计手指力。对于 EEG 分类,在对来自现有 2b 数据集的九位受试者的原始 EEG 数据进行测试时,获得了 75%的平均精度。

意义

这项工作为 NeuCube 尖峰模型在 SpiNNaker 神经形态平台上对原始 sEMG 和 EEG 解码的成功实现提供了一个概念验证,这为新一代便携式闭环和低功耗神经假体开辟了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验