Suppr超能文献

在英特尔神经形态硬件Loihi上映射和验证点神经元模型。

Mapping and Validating a Point Neuron Model on Intel's Neuromorphic Hardware Loihi.

作者信息

Dey Srijanie, Dimitrov Alexander

机构信息

Department of Mathematics, Washington State University, Vancouver, WA, United States.

出版信息

Front Neuroinform. 2022 May 30;16:883360. doi: 10.3389/fninf.2022.883360. eCollection 2022.

Abstract

Neuromorphic hardware is based on emulating the natural biological structure of the brain. Since its computational model is similar to standard neural models, it could serve as a computational accelerator for research projects in the field of neuroscience and artificial intelligence, including biomedical applications. However, in order to exploit this new generation of computer chips, we ought to perform rigorous simulation and consequent validation of neuromorphic models against their conventional implementations. In this work, we lay out the numeric groundwork to enable a comparison between neuromorphic and conventional platforms. "Loihi"-Intel's fifth generation neuromorphic chip, which is based on the idea of Spiking Neural Networks (SNNs) emulating the activity of neurons in the brain, serves as our neuromorphic platform. The work here focuses on Leaky Integrate and Fire (LIF) models based on neurons in the mouse primary visual cortex and matched to a rich data set of anatomical, physiological and behavioral constraints. Simulations on classical hardware serve as the validation platform for the neuromorphic implementation. We find that Loihi replicates classical simulations very efficiently with high precision. As a by-product, we also investigate Loihi's potential in terms of scalability and performance and find that it scales notably well in terms of run-time performance as the simulated networks become larger.

摘要

神经形态硬件基于对大脑自然生物结构的模拟。由于其计算模型与标准神经模型相似,它可以作为神经科学和人工智能领域研究项目的计算加速器,包括生物医学应用。然而,为了利用这新一代计算机芯片,我们应该针对传统实现方式对神经形态模型进行严格的模拟并随之进行验证。在这项工作中,我们奠定了数值基础,以便能够对神经形态平台和传统平台进行比较。“Loihi”——英特尔的第五代神经形态芯片,它基于脉冲神经网络(SNN)的理念,模拟大脑中神经元的活动,作为我们的神经形态平台。这里的工作重点是基于小鼠初级视觉皮层中的神经元并与丰富的解剖学、生理学和行为学约束数据集相匹配的泄漏积分发放(LIF)模型。在经典硬件上的模拟作为神经形态实现的验证平台。我们发现Loihi能够非常高效且高精度地复制经典模拟。作为一个副产品,我们还研究了Loihi在可扩展性和性能方面的潜力,发现随着模拟网络规模变大,它在运行时性能方面具有显著的良好扩展性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81db/9886005/1f631d7d9797/fninf-16-883360-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验