Kraxberger Florian, Näger Christoph, Laudato Marco, Sundström Elias, Becker Stefan, Mihaescu Mihai, Kniesburges Stefan, Schoder Stefan
Institute of Fundamentals and Theory in Electrical Engineering (IGTE), Graz University of Technology, Inffeldgasse 18/I, 8010 Graz, Austria.
Institute of Fluid Mechanics (LSTM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 4, 91058 Erlangen, Germany.
Bioengineering (Basel). 2023 Nov 28;10(12):1369. doi: 10.3390/bioengineering10121369.
Sound generation in human phonation and the underlying fluid-structure-acoustic interaction that describes the sound production mechanism are not fully understood. A previous experimental study, with a silicone made vocal fold model connected to a straight vocal tract pipe of fixed length, showed that vibroacoustic coupling can cause a deviation in the vocal fold vibration frequency. This occurred when the fundamental frequency of the vocal fold motion was close to the lowest acoustic resonance frequency of the pipe. What is not fully understood is how the vibroacoustic coupling is influenced by a varying vocal tract length. Presuming that this effect is a pure coupling of the acoustical effects, a numerical simulation model is established based on the computation of the mechanical-acoustic eigenvalue. With varying pipe lengths, the lowest acoustic resonance frequency was adjusted in the experiments and so in the simulation setup. In doing so, the evolution of the vocal folds' coupled eigenvalues and eigenmodes is investigated, which confirms the experimental findings. Finally, it was shown that for normal phonation conditions, the mechanical mode is the most efficient vibration pattern whenever the acoustic resonance of the pipe (lowest formant) is far away from the vocal folds' vibration frequency. Whenever the lowest formant is slightly lower than the mechanical vocal fold eigenfrequency, the coupled vocal fold motion pattern at the formant frequency dominates.
人类发声过程中的声音产生以及描述声音产生机制的潜在流体 - 结构 - 声学相互作用尚未得到充分理解。先前的一项实验研究,使用连接到固定长度直管状声道的硅胶制成的声带模型,表明振动声学耦合会导致声带振动频率出现偏差。当声带运动的基频接近管道的最低声学共振频率时,就会出现这种情况。尚未完全理解的是,声道长度变化如何影响振动声学耦合。假定这种效应是声学效应的纯粹耦合,基于机械 - 声学特征值的计算建立了一个数值模拟模型。在实验中以及模拟设置中,通过改变管道长度来调整最低声学共振频率。在此过程中,研究了声带耦合特征值和特征模态的演变,这证实了实验结果。最后表明,在正常发声条件下,只要管道的声学共振(最低共振峰)远离声带的振动频率,机械模式就是最有效的振动模式。每当最低共振峰略低于机械声带特征频率时,共振峰频率处的耦合声带运动模式就占主导地位。