Yang Wenhua, Hao Yonghong, Mu Ketao, Li Jianjun, Tao Zihui, Ma Delin, Xu Anhui
Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
Bioengineering (Basel). 2023 Dec 14;10(12):1423. doi: 10.3390/bioengineering10121423.
To evaluate the secretory function of adrenal incidentaloma, this study explored the usefulness of a contrast-enhanced computed tomography (CECT)-based radiomics model for distinguishing aldosterone-producing adenoma (APA) from non-functioning adrenal adenoma (NAA). Overall, 68 APA and 60 NAA patients were randomly assigned (8:2 ratio) to either a training or a test cohort. In the training cohort, univariate and least absolute shrinkage and selection operator regression analyses were conducted to select the significant features. A logistic regression machine learning (ML) model was then constructed based on the radiomics score and clinical features. Model effectiveness was evaluated according to the receiver operating characteristic, accuracy, sensitivity, specificity, F1 score, calibration plots, and decision curve analysis. In the test cohort, the area under the curve (AUC) of the Radscore model was 0.869 [95% confidence interval (CI), 0.734-1.000], and the accuracy, sensitivity, specificity, and F1 score were 0.731, 1.000, 0.583, and 0.900, respectively. The Clinic-Radscore model had an AUC of 0.994 [95% CI, 0.978-1.000], and the accuracy, sensitivity, specificity, and F1 score values were 0.962, 0.929, 1.000, and 0.931, respectively. In conclusion, the CECT-based radiomics and clinical radiomics ML model exhibited good diagnostic efficacy in differentiating APAs from NAAs; this non-invasive, cost-effective, and efficient method is important for the management of adrenal incidentaloma.
为评估肾上腺意外瘤的分泌功能,本研究探索了基于对比增强计算机断层扫描(CECT)的放射组学模型在区分醛固酮瘤(APA)与无功能肾上腺腺瘤(NAA)方面的有效性。总体而言,68例APA患者和60例NAA患者被随机分配(8:2比例)至训练组或测试组。在训练组中,进行单变量分析以及最小绝对收缩和选择算子回归分析以选择显著特征。然后基于放射组学评分和临床特征构建逻辑回归机器学习(ML)模型。根据受试者工作特征曲线、准确率、敏感性、特异性、F1评分、校准图和决策曲线分析评估模型有效性。在测试组中,Radscore模型的曲线下面积(AUC)为(0.869) [95%置信区间(CI),(0.734 - 1.000)],准确率、敏感性、特异性和F1评分分别为(0.731)、(1.000)、(0.583)和(0.900)。Clinic - Radscore模型的AUC为(0.994) [95% CI,(0.978 - 1.000)],准确率、敏感性、特异性和F1评分值分别为(0.962)、(0.929)、(1.000)和(0.931)。总之,基于CECT的放射组学和临床放射组学ML模型在区分APA和NAA方面表现出良好的诊断效能;这种非侵入性、经济高效的方法对于肾上腺意外瘤的管理具有重要意义。