Suppr超能文献

基于影像组学和临床放射学模型的多种肾上腺腺瘤亚型鉴别:一项双中心研究

Differentiation of multiple adrenal adenoma subtypes based on a radiomics and clinico-radiological model: a dual-center study.

作者信息

Zhang Xinzhang, Si Yapeng, Shi Xin, Zhang Yiwen, Yang Liuyang, Yang Junfeng, Zhang Ye, Leng Jinjun, Hu Pingping, Liu Hao, Chen Jiaqi, Li Wenliang, Song Wei, Zhu Jianping, Yang Maolin, Li Wei, Wang Junfeng

机构信息

Research Center of Digital Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, China.

The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, 650032, China.

出版信息

BMC Med Imaging. 2025 Feb 10;25(1):45. doi: 10.1186/s12880-025-01556-w.

Abstract

BACKGROUND

The prevalence and detection rates of adrenal incidentalomas have been on the rise globally, with more than 90% of these lesions pathologically classified as adrenocortical adenomas. Among these, approximately 30% of patients present with hormone-secreting adenomas, leading to the deterioration of their health, with some requiring surgical resection. The available methods for adrenal function evaluation are invasive and costly. Moreover, their accuracy is influenced by numerous factors. Therefore, it is imperative to develop non-invasive and simplified preoperative diagnostic approach.

METHODS

A retrospective study was performed on 169 patients from two tertiary medical centers. Subsequently, radiomics features were extracted after tumor margins were delineated layer-by-layer using a semi-automatic contouring approach. Feature selection was achieved in two cycles, with the first round utilizing a support vector machine (SVM) and the second round using a LASSO-based recursive feature elimination algorithm. Finally, logistic regression models were constructed using the clinico-radiological, radiomics, and a combination of both.

RESULTS

After a comprehensive evaluation of the predictive indicators, the logistic regression classifier model based on the combined clinico-radiological and radiomic features had an AUC of (0.945, 0.927, 0.856) for aldosterone-producing adenoma (APA), (0.963, 0.889, 0.887) for cortisol-producing adenoma (CPA), and (0.940, 0.765, 0.816) for non-functioning adrenal adenoma (NAA) in the training set, validation set, and external test set, respectively. This model exhibited superior predictive performance in differentiating between the three adrenal adenoma subtypes.

CONCLUSIONS

A logistic regression model was constructed using radiomics and clinico-radiological features derived from multi-phase enhanced CT images and conducted external validation. The combined model showed good overall performance, highlighting the feasibility of applying the model for preoperative differentiation and prediction of various types of ACA.

摘要

背景

肾上腺偶发瘤的患病率和检出率在全球范围内呈上升趋势,其中超过90%的病变在病理上被分类为肾上腺皮质腺瘤。其中,约30%的患者患有分泌激素的腺瘤,导致健康状况恶化,部分患者需要手术切除。现有的肾上腺功能评估方法具有侵入性且成本高昂。此外,其准确性受多种因素影响。因此,开发非侵入性且简化的术前诊断方法势在必行。

方法

对来自两家三级医疗中心的169例患者进行回顾性研究。随后,使用半自动轮廓勾勒方法逐层勾勒肿瘤边缘后提取影像组学特征。特征选择分两个循环进行,第一轮使用支持向量机(SVM),第二轮使用基于LASSO的递归特征消除算法。最后,使用临床放射学、影像组学以及两者的组合构建逻辑回归模型。

结果

在对预测指标进行全面评估后,基于临床放射学和影像组学联合特征的逻辑回归分类器模型在训练集、验证集和外部测试集中,对于醛固酮分泌性腺瘤(APA)的AUC分别为(0.945,0.927,0.856),对于皮质醇分泌性腺瘤(CPA)的AUC分别为(0.963,0.889,0.887),对于无功能肾上腺腺瘤(NAA)的AUC分别为(0.940,0.765,0.816)。该模型在区分三种肾上腺腺瘤亚型方面表现出卓越的预测性能。

结论

利用多期增强CT图像得出的影像组学和临床放射学特征构建了逻辑回归模型并进行了外部验证。联合模型显示出良好的整体性能,突出了将该模型应用于术前鉴别和预测各种类型肾上腺皮质腺瘤的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0dc4/11812231/29c19b8d5980/12880_2025_1556_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验