Miranda Manuel, Estrada-Rodriguez Gissell, Estrada Ernesto
Institute of Cross-Disciplinary Physics and Complex Systems, IFISC (UIB-CSIC), 07122 Palma de Mallorca, Spain.
Departament de Matemàtica, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain.
Entropy (Basel). 2023 Nov 29;25(12):1599. doi: 10.3390/e25121599.
Geometric realization of simplicial complexes makes them a unique representation of complex systems. The existence of local continuous spaces at the simplices level with global discrete connectivity between simplices makes the analysis of dynamical systems on simplicial complexes a challenging problem. In this work, we provide some examples of complex systems in which this representation would be a more appropriate model of real-world phenomena. Here, we generalize the concept of metaplexes to embrace that of geometric simplicial complexes, which also includes the definition of dynamical systems on them. A metaplex is formed by regions of a continuous space of any dimension interconnected by sinks and sources that works controlled by discrete (graph) operators. The definition of simplicial metaplexes given here allows the description of the diffusion dynamics of this system in a way that solves the existing problems with previous models. We make a detailed analysis of the generalities and possible extensions of this model beyond simplicial complexes, e.g., from polytopal and cell complexes to manifold complexes, and apply it to a real-world simplicial complex representing the visual cortex of a macaque.
单纯复形的几何实现使其成为复杂系统的一种独特表示。在单纯形层面存在局部连续空间且单纯形之间具有全局离散连通性,这使得对单纯复形上的动力系统进行分析成为一个具有挑战性的问题。在这项工作中,我们提供了一些复杂系统的示例,其中这种表示将是更适合真实世界现象的模型。在此,我们将元复形的概念进行推广,以涵盖几何单纯复形的概念,这也包括其上动力系统的定义。元复形由任意维度的连续空间区域组成,这些区域通过由离散(图)算子控制工作的汇和源相互连接。这里给出的单纯元复形的定义允许以解决先前模型中现有问题的方式描述该系统的扩散动力学。我们对该模型的一般性以及超出单纯复形的可能扩展进行了详细分析,例如从多面体和胞腔复形到流形复形,并将其应用于表示猕猴视觉皮层的真实世界单纯复形。