Suppr超能文献

在哥伦比亚一组成人肺结核(APTB)患者中使用结核分枝杆菌(Mtb)变体和血清生物标志物的结核病严重程度预测模型

Tuberculosis Severity Predictive Model Using Mtb Variants and Serum Biomarkers in a Colombian Cohort of APTB Patients.

作者信息

Ocampo Juan C, Alzate Juan F, Barrera Luis F, Baena Andres

机构信息

Grupo de Inmunología Celular e Inmunogenética (GICIG), Universidad de Antioquia (UdeA), Medellín 050010, Colombia.

Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín 050010, Colombia.

出版信息

Biomedicines. 2023 Nov 22;11(12):3110. doi: 10.3390/biomedicines11123110.

Abstract

Currently, tuberculosis (TB) is a bacterial infection caused by (Mtb) that primarily affects the lungs. The severity of active pulmonary TB (APTB) is an important determinant of transmission, morbidity, mortality, disease experience, and treatment outcomes. Several publications have shown a high prevalence of disabling complications in individuals who have had severe APTB. Furthermore, certain strains of Mtb were associated with more severe disease outcomes. The use of biomarkers to predict severe APTB patients who are candidates for host-directed therapies, due to the high risk of developing post-tuberculous lung disease (PTLD), has not yet been implemented in the management of TB patients. We followed 108 individuals with APTB for 6 months using clinical tools, flow cytometry, and whole-genome sequencing (WGS). The median age of the study population was 26.5 years, and the frequency of women was 53.7%. In this study, we aimed to identify biomarkers that could help us to recognize individuals with APTB and improve our understanding of the immunopathology in these individuals. In this study, we conducted a follow-up on the treatment progress of 121 cases of APTB. The follow-up process commenced at the time of diagnosis (T0), continued with a control visit at 2 months (T2), and culminated in an exit appointment at 6 months following the completion of medical treatment (T6). People classified with severe APTB showed significantly higher levels of IL-6 (14.7 pg/mL; < 0.05) compared to those with mild APTB (7.7 pg/mL) at T0. The AUCs for the ROC curves and the Matthews correlation coefficient values (MCC) demonstrate correlations ranging from moderate to very strong. We conducted WGS on 88 clinical isolates of Mtb, and our analysis revealed a total of 325 genes with insertions and deletions (Indels) within their coding regions when compared to the Mtb H37Rv reference genome. The pattern of association was found between serum levels of CHIT1 and the presence of Indels in Mtb isolates from patients with severe APTB. A key finding in our study was the high levels of CHIT1 in severe APTB patients. We identified a biomarker profile (IL-6, IFN-γ, IL-33, and CHIT1) that allows us to identify individuals with severe APTB, as well as the identification of a panel of polymorphisms (125) in clinical isolates of Mtb from individuals with severe APTB. Integrating these findings into a predictive model of severity would show promise for the management of APTB patients in the future, to guide host-directed therapy and reduce the prevalence of PTLD.

摘要

目前,结核病(TB)是由结核分枝杆菌(Mtb)引起的细菌感染,主要影响肺部。活动性肺结核(APTB)的严重程度是传播、发病率、死亡率、疾病经历和治疗结果的重要决定因素。几份出版物显示,患有严重APTB的个体中致残并发症的患病率很高。此外,某些Mtb菌株与更严重的疾病结果相关。由于发生结核后肺部疾病(PTLD)的风险很高,使用生物标志物来预测适合接受宿主导向治疗的严重APTB患者,尚未在结核病患者的管理中得到应用。我们使用临床工具、流式细胞术和全基因组测序(WGS)对108例APTB患者进行了6个月的随访。研究人群的中位年龄为26.5岁,女性比例为53.7%。在本研究中,我们旨在识别有助于我们识别APTB患者并增进对这些个体免疫病理学理解的生物标志物。在本研究中,我们对121例APTB患者的治疗进展进行了随访。随访过程从诊断时(T0)开始,在2个月时进行对照访视(T2),并在完成治疗后6个月进行出院预约(T6)。在T0时,与轻度APTB患者(7.7 pg/mL)相比,被归类为严重APTB的患者IL-6水平显著更高(14.7 pg/mL;P<0.05)。ROC曲线的AUC值和马修斯相关系数值(MCC)显示出从中度到非常强的相关性。我们对88株Mtb临床分离株进行了WGS,分析显示与Mtb H37Rv参考基因组相比,其编码区域内共有325个基因存在插入和缺失(Indels)。在严重APTB患者的Mtb分离株中,发现血清CHIT1水平与Indels的存在之间存在关联模式。我们研究中的一个关键发现是严重APTB患者中CHIT1水平很高。我们确定了一种生物标志物谱(IL-6、IFN-γ、IL-33和CHIT1),使我们能够识别严重APTB患者,以及在严重APTB患者的Mtb临床分离株中鉴定出一组多态性(125个)。将这些发现整合到严重程度预测模型中,有望在未来对APTB患者进行管理,以指导宿主导向治疗并降低PTLD的患病率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9488/10740695/19f0c3e85143/biomedicines-11-03110-g001a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验