Suppr超能文献

基于机器学习和分子建模的针对 SARS-CoV-2 3-胰凝乳蛋白酶样蛋白酶的天然类黄酮的计算机筛选。

In Silico Screening of Natural Flavonoids against 3-Chymotrypsin-like Protease of SARS-CoV-2 Using Machine Learning and Molecular Modeling.

机构信息

School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA.

出版信息

Molecules. 2023 Dec 10;28(24):8034. doi: 10.3390/molecules28248034.

Abstract

The "Long-COVID syndrome" has posed significant challenges due to a lack of validated therapeutic options. We developed a novel multi-step virtual screening strategy to reliably identify inhibitors against 3-chymotrypsin-like protease of SARS-CoV-2 from abundant flavonoids, which represents a promising source of antiviral and immune-boosting nutrients. We identified 57 interacting residues as contributors to the protein-ligand binding pocket. Their energy interaction profiles constituted the input features for Machine Learning (ML) models. The consensus of 25 classifiers trained using various ML algorithms attained 93.9% accuracy and a 6.4% false-positive-rate. The consensus of 10 regression models for binding energy prediction also achieved a low root-mean-square error of 1.18 kcal/mol. We screened out 120 flavonoid hits first and retained 50 drug-like hits after predefined ADMET filtering to ensure bioavailability and safety profiles. Furthermore, molecular dynamics simulations prioritized nine bioactive flavonoids as promising anti-SARS-CoV-2 agents exhibiting both high structural stability (root-mean-square deviation < 5 Å for 218 ns) and low MM/PBSA binding free energy (<-6 kcal/mol). Among them, KB-2 (PubChem-CID, 14630497) and 9--Methylglyceofuran (PubChem-CID, 44257401) displayed excellent binding affinity and desirable pharmacokinetic capabilities. These compounds have great potential to serve as oral nutraceuticals with therapeutic and prophylactic properties as care strategies for patients with long-COVID syndrome.

摘要

“长新冠综合征”由于缺乏经过验证的治疗方法,带来了巨大的挑战。我们开发了一种新的多步骤虚拟筛选策略,从丰富的类黄酮中可靠地识别出针对 SARS-CoV-2 的 3-糜蛋白酶样蛋白酶抑制剂,这是一种有前途的抗病毒和增强免疫的营养物质来源。我们确定了 57 个相互作用残基作为蛋白-配体结合口袋的贡献者。它们的能量相互作用谱构成了机器学习 (ML) 模型的输入特征。使用各种 ML 算法训练的 25 个分类器的共识达到了 93.9%的准确率和 6.4%的假阳性率。用于结合能预测的 10 个回归模型的共识也达到了 1.18 kcal/mol 的低均方根误差。我们首先筛选出 120 种类黄酮命中物,然后在预定义的 ADMET 过滤后保留 50 种药物样命中物,以确保生物利用度和安全性。此外,分子动力学模拟将 9 种具有生物活性的类黄酮作为有前途的抗 SARS-CoV-2 药物进行了优先级排序,这些药物表现出高结构稳定性(218 ns 时均方根偏差 < 5 Å)和低 MM/PBSA 结合自由能(<-6 kcal/mol)。其中,KB-2(PubChem-CID,14630497)和 9--Methylglyceofuran(PubChem-CID,44257401)显示出优异的结合亲和力和理想的药代动力学特性。这些化合物具有作为口服营养保健品的巨大潜力,具有治疗和预防特性,可作为长新冠综合征患者的护理策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/390f/10745665/6f7e02b6dff3/molecules-28-08034-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验