Suppr超能文献

用共识模型增强转甲状腺素蛋白结合亲和力预测:来自Tox24挑战赛的见解

Enhancing Transthyretin Binding Affinity Prediction with a Consensus Model: Insights from the Tox24 Challenge.

作者信息

Pan Xiaolin, Gu Yaowen, Zhou Weijun, Zhang Yingkai

机构信息

Department of Chemistry, New York University, New York, New York 10003, United States.

Simons Center for Computational Physical Chemistry at New York University, New York, New York 10003, United States.

出版信息

Chem Res Toxicol. 2025 May 19;38(5):900-908. doi: 10.1021/acs.chemrestox.4c00560. Epub 2025 Apr 26.

Abstract

Transthyretin (TTR) plays a vital role in thyroid hormone transport and homeostasis in both the blood and target tissues. Interactions between exogenous compounds and TTR can disrupt the function of the endocrine system, potentially causing toxicity. In the Tox24 challenge, we leveraged the data set provided by the organizers to develop a deep learning-based consensus model, integrating sPhysNet, KANO, and GGAP-CPI for predicting TTR binding affinity. Each model utilized distinct levels of molecular information, including 2D topology, 3D geometry, and protein-ligand interactions. Our consensus model achieved favorable performance on the blind test set, yielding an RMSE of 20.8 and ranking fifth among all submissions. Following the release of the blind test set, we incorporated the leaderboard test set into our training data, further reducing the RMSE to 20.6 in an offlineretrospective study. These results demonstrate that combining three regression models across different modalities significantly enhances the predictive accuracy. Furthermore, we employ the standard deviation of the consensus model's ensemble outputs as an uncertainty estimate. Our analysis reveals that both the RMSE and interval error of predictions increase with rising uncertainty, indicating that the uncertainty can serve as a useful measure of prediction confidence. We believe that this consensus model can be a valuable resource for identifying potential TTR binders and predicting their binding affinity in silico. The source code for data preparation, model training, and prediction can be accessed at https://github.com/xiaolinpan/tox24_challenge_submission_yingkai_lab.

摘要

转甲状腺素蛋白(TTR)在甲状腺激素于血液和靶组织中的运输及稳态维持过程中发挥着至关重要的作用。外源性化合物与TTR之间的相互作用可能会扰乱内分泌系统的功能,进而引发毒性。在Tox24挑战赛中,我们利用主办方提供的数据集,开发了一种基于深度学习的共识模型,该模型整合了sPhysNet、KANO和GGAP - CPI,用于预测TTR结合亲和力。每个模型利用了不同层次的分子信息,包括二维拓扑结构、三维几何结构以及蛋白质 - 配体相互作用。我们的共识模型在盲测集上取得了良好的性能,均方根误差(RMSE)为20.8,在所有提交结果中排名第五。在盲测集发布后,我们将排行榜测试集纳入训练数据,在离线回顾性研究中进一步将RMSE降低至20.6。这些结果表明,结合三种不同模式的回归模型可显著提高预测准确性。此外,我们将共识模型集成输出的标准差用作不确定性估计。我们的分析表明,预测的RMSE和区间误差均随着不确定性的增加而增大,这表明不确定性可作为预测置信度的一个有用度量。我们相信,这种共识模型可成为识别潜在TTR结合剂并在计算机上预测其结合亲和力的宝贵资源。数据准备、模型训练和预测的源代码可在https://github.com/xiaolinpan/tox24_challenge_submission_yingkai_lab获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fdd8/12093365/b9ba13339a49/tx4c00560_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验