Group of Computational and Medicinal Chemistry, LMCE Laboratory, University of Biskra, Biskra 707000, Algeria.
Department of Biology, College of Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia.
Molecules. 2023 Dec 13;28(24):8074. doi: 10.3390/molecules28248074.
Marine compounds constitute a diverse and invaluable resource for the discovery of bioactive substances with promising applications in the pharmaceutical development of anti-inflammatory and antibacterial agents. In this study, a comprehensive methodology was employed, encompassing pharmacophore modeling, virtual screening, in silico ADMET assessment (encompassing aspects of absorption, distribution, metabolism, excretion, and toxicity), and molecular dynamics simulations. These methods were applied to identify new inhibitors targeting the Hsp90 protein (heat shock protein 90), commencing with a diverse assembly of compounds sourced from marine origins. During the virtual screening phase, an extensive exploration was conducted on a dataset comprising 31,488 compounds sourced from the CMNPD database, characterized by a wide array of molecular structures. The principal objective was the development of structure-based pharmacophore models, a valuable approach when the pool of known ligands is limited. The pharmacophore model DDRRR was successfully constructed within the active sites of the Hsp90 crystal structure. Subsequent docking studies led to the identification of six compounds (CMNPD , , , , , and ) demonstrating substantial binding affinities, each with values below -8.3 kcal/mol. In the realm of in silico ADMET predictions, five of these compounds exhibited favorable pharmacokinetic properties. Furthermore, molecular dynamics simulations and total binding energy calculations using MM-PBSA indicated that these marine-derived compounds formed exceptionally stable complexes with the Hsp90 receptor over a 100-nanosecond simulation period. These findings underscore the considerable potential of these novel marine compounds as promising candidates for anticancer and antimicrobial drug development.
海洋化合物是发现具有抗炎和抗菌作用的药物开发有前途的生物活性物质的多样化和宝贵资源。在这项研究中,采用了综合的方法学,包括药效团建模、虚拟筛选、计算机 ADMET 评估(包括吸收、分布、代谢、排泄和毒性)和分子动力学模拟。这些方法用于识别针对 Hsp90 蛋白(热休克蛋白 90)的新型抑制剂,从海洋来源的多种化合物开始。在虚拟筛选阶段,对来自 CMNPD 数据库的 31488 种化合物的数据集进行了广泛的探索,这些化合物具有广泛的分子结构。主要目标是开发基于结构的药效团模型,当已知配体池有限时,这是一种很有价值的方法。药效团模型 DDRRR 在 Hsp90 晶体结构的活性部位内成功构建。随后的对接研究确定了六种具有显著结合亲和力的化合物(CMNPD 、 、 、 、 和 ),每个化合物的结合亲和力值均低于-8.3 kcal/mol。在计算机 ADMET 预测领域,这五种化合物表现出良好的药代动力学特性。此外,使用 MM-PBSA 的分子动力学模拟和总结合能计算表明,这些海洋衍生化合物与 Hsp90 受体形成了非常稳定的复合物,在 100 纳秒的模拟时间内。这些发现突显了这些新型海洋化合物作为抗癌和抗菌药物开发有前途的候选物的巨大潜力。