Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100811, China.
Int J Mol Sci. 2023 Dec 14;24(24):17473. doi: 10.3390/ijms242417473.
Global reports of novel SARS-CoV-2 variants and recurrence cases continue despite substantial vaccination campaigns, raising severe concerns about COVID-19. While repurposed drugs offer some treatment options for COVID-19, notably, nucleoside inhibitors like Remdesivir stand out as curative therapies for COVID-19 that are approved by the US Food and Drug Administration (FDA). The emergence of highly contagious SARS-CoV-2 variants underscores the imperative for antiviral drugs adaptable to evolving viral mutations. RNA-dependent RNA polymerase (RdRp) plays a key role in viral genome replication. Currently, inhibiting viral RdRp function remains a pivotal strategy to tackle the notorious virus. Peptide nucleic acid (PNA) therapy shows promise by effectively targeting specific genome regions, reducing viral replication, and inhibiting infection. In our study, we designed PNA antisense oligomers conjugated with cell-penetrating peptides (CPP) aiming to evaluate their antiviral effects against RdRp target using structure-guided drug design, which involves molecular docking simulations, drug likeliness and pharmacokinetic evaluations, molecular dynamics simulations, and computing binding free energy. The in silico analysis predicts that chemically modified PNAs might act as antisense molecules in order to disrupt ribosome assembly at RdRp's translation start site, and their chemically stable and neutral backbone might enhance sequence-specific RNA binding interaction. Notably, our findings demonstrate that PNA-peptide conjugates might be the most promising inhibitors of SARS-CoV-2 RdRp, with superior binding free energy compared to Remdesivir in the current COVID-19 medication. Specifically, PNA-CPP-1 could bind simultaneously to the active site residues of RdRp protein and sequence-specific RdRp-RNA target in order to control viral replication.
尽管开展了大规模疫苗接种活动,但仍有全球新型 SARS-CoV-2 变体和复发病例报告,这引发了对 COVID-19 的严重关切。虽然重新利用的药物为 COVID-19 提供了一些治疗选择,但值得注意的是,核苷类似物抑制剂如瑞德西韦是被美国食品和药物管理局 (FDA) 批准的 COVID-19 治疗方法。高度传染性的 SARS-CoV-2 变体的出现突显出需要开发适应病毒不断变化的突变的抗病毒药物。RNA 依赖性 RNA 聚合酶 (RdRp) 在病毒基因组复制中发挥关键作用。目前,抑制病毒 RdRp 功能仍然是应对臭名昭著的病毒的关键策略。肽核酸 (PNA) 治疗通过有效靶向特定基因组区域、减少病毒复制和抑制感染显示出希望。在我们的研究中,我们设计了与细胞穿透肽 (CPP) 缀合的 PNA 反义寡聚体,旨在通过基于结构的药物设计评估它们针对 RdRp 靶标的抗病毒效果,其中涉及分子对接模拟、药物相似性和药代动力学评估、分子动力学模拟和计算结合自由能。计算机分析预测,化学修饰的 PNAs 可能作为反义分子起作用,以扰乱 RdRp 的翻译起始位点处的核糖体组装,并且它们化学稳定和中性的骨架可能增强序列特异性 RNA 结合相互作用。值得注意的是,我们的研究结果表明,PNA-肽缀合物可能是 SARS-CoV-2 RdRp 的最有前途的抑制剂,与当前 COVID-19 药物中的瑞德西韦相比,具有更高的结合自由能。具体来说,PNA-CPP-1 可以同时结合 RdRp 蛋白的活性位点残基和序列特异性 RdRp-RNA 靶标,以控制病毒复制。