Suppr超能文献

利用基于无人机的多光谱数据和机器学习的光谱、结构和纹理特征估算燕麦地上生物量。

Utilizing Spectral, Structural and Textural Features for Estimating Oat Above-Ground Biomass Using UAV-Based Multispectral Data and Machine Learning.

机构信息

Plant Breeding Graduate Program, University of Florida, Gainesville, FL 32608, USA.

Department of Geography and Geospatial Sciences, South Dakota State University, Brookings, SD 57007, USA.

出版信息

Sensors (Basel). 2023 Dec 8;23(24):9708. doi: 10.3390/s23249708.

Abstract

Accurate and timely monitoring of biomass in breeding nurseries is essential for evaluating plant performance and selecting superior genotypes. Traditional methods for phenotyping above-ground biomass in field conditions requires significant time, cost, and labor. Unmanned Aerial Vehicles (UAVs) offer a rapid and non-destructive approach for phenotyping multiple field plots at a low cost. While Vegetation Indices (VIs) extracted from remote sensing imagery have been widely employed for biomass estimation, they mainly capture spectral information and disregard the 3D canopy structure and spatial pixel relationships. Addressing these limitations, this study, conducted in 2020 and 2021, aimed to explore the potential of integrating UAV multispectral imagery-derived canopy spectral, structural, and textural features with machine learning algorithms for accurate oat biomass estimation. Six oat genotypes planted at two seeding rates were evaluated in two South Dakota locations at multiple growth stages. Plot-level canopy spectral, structural, and textural features were extracted from the multispectral imagery and used as input variables for three machine learning models: Partial Least Squares Regression (PLSR), Support Vector Regression (SVR), and Random Forest Regression (RFR). The results showed that (1) in addition to canopy spectral features, canopy structural and textural features are also important indicators for oat biomass estimation; (2) combining spectral, structural, and textural features significantly improved biomass estimation accuracy over using a single feature type; (3) machine learning algorithms showed good predictive ability with slightly better estimation accuracy shown by RFR (R = 0.926 and relative root mean square error (RMSE%) = 15.97%). This study demonstrated the benefits of UAV imagery-based multi-feature fusion using machine learning for above-ground biomass estimation in oat breeding nurseries, holding promise for enhancing the efficiency of oat breeding through UAV-based phenotyping and crop management practices.

摘要

准确和及时地监测繁殖苗圃中的生物量对于评估植物表现和选择优良基因型至关重要。在田间条件下对地上生物量进行表型分析的传统方法需要大量的时间、成本和劳动力。无人机 (UAV) 提供了一种快速且无损的方法,可以以低成本对多个田间地块进行表型分析。虽然从遥感图像中提取的植被指数 (VI) 已被广泛用于生物量估计,但它们主要捕捉光谱信息,而忽略了 3D 冠层结构和空间像素关系。为了解决这些限制,本研究于 2020 年和 2021 年进行,旨在探索将无人机多光谱图像衍生的冠层光谱、结构和纹理特征与机器学习算法相结合,用于准确估计燕麦生物量的潜力。在南达科他州的两个地点,在多个生长阶段评估了六个燕麦基因型,播种率分别为两个。从多光谱图像中提取了斑块级冠层光谱、结构和纹理特征,并将其用作三个机器学习模型的输入变量:偏最小二乘回归 (PLSR)、支持向量回归 (SVR) 和随机森林回归 (RFR)。结果表明:(1) 除了冠层光谱特征外,冠层结构和纹理特征也是燕麦生物量估计的重要指标;(2) 结合光谱、结构和纹理特征可显著提高生物量估计精度,优于使用单一特征类型;(3) 机器学习算法具有良好的预测能力,其中 RFR 的估计精度略高 (R = 0.926,相对均方根误差 (RMSE%) = 15.97%)。本研究证明了在燕麦繁殖苗圃中使用基于无人机图像的多特征融合和机器学习进行地上生物量估计的益处,这有望通过基于无人机的表型分析和作物管理实践来提高燕麦的育种效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验