Suppr超能文献

基于高清地图的感知不确定性在线定量分析

Online Quantitative Analysis of Perception Uncertainty Based on High-Definition Map.

作者信息

Yang Mingliang, Jiao Xinyu, Jiang Kun, Cheng Qian, Yang Yanding, Yang Mengmeng, Yang Diange

机构信息

School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China.

出版信息

Sensors (Basel). 2023 Dec 17;23(24):9876. doi: 10.3390/s23249876.

Abstract

Environmental perception plays a fundamental role in decision-making and is crucial for ensuring the safety of autonomous driving. A pressing challenge is the online evaluation of perception uncertainty, a crucial step towards ensuring the safety and the industrialization of autonomous driving. High-definition maps offer precise information about static elements on the road, along with their topological relationships. As a result, the map can provide valuable prior information for assessing the uncertainty associated with static elements. In this paper, a method for evaluating perception uncertainty online, encompassing both static and dynamic elements, is introduced based on the high-definition map. The proposed method is as follows: Firstly, the uncertainty of static elements in perception, including the uncertainty of their existence and spatial information, was assessed based on the spatial and topological features of the static environmental elements; secondly, an online assessment model for the uncertainty of dynamic elements in perception was constructed. The online evaluation of the static element uncertainty was utilized to infer the dynamic element uncertainty, and then a model for recognizing the driving scenario and weather conditions was constructed to identify the triggering factors of uncertainty in real-time perception during autonomous driving operations, which can further optimize the online assessment model for perception uncertainty. The verification results on the nuScenes dataset show that our uncertainty assessment method based on a high-definition map effectively evaluates the real-time perception results' performance.

摘要

环境感知在决策中起着基础性作用,对于确保自动驾驶的安全性至关重要。一个紧迫的挑战是对感知不确定性进行在线评估,这是迈向自动驾驶安全与产业化的关键一步。高清地图提供了道路上静态元素的精确信息及其拓扑关系。因此,地图可为评估与静态元素相关的不确定性提供有价值的先验信息。本文基于高清地图介绍了一种在线评估感知不确定性的方法,该方法涵盖静态和动态元素。所提出的方法如下:首先,基于静态环境元素的空间和拓扑特征,评估感知中静态元素的不确定性,包括其存在性和空间信息的不确定性;其次,构建了感知中动态元素不确定性的在线评估模型。利用静态元素不确定性的在线评估来推断动态元素不确定性,然后构建一个用于识别驾驶场景和天气状况的模型,以实时感知自动驾驶操作过程中不确定性的触发因素,这可以进一步优化感知不确定性的在线评估模型。在nuScenes数据集上的验证结果表明,我们基于高清地图的不确定性评估方法有效地评估了实时感知结果的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c954/10747777/4f487a1b4b4d/sensors-23-09876-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验