Pyo Jeong-Won, Choi Jun-Hyeon, Kuc Tae-Yong
Department of Electrical and Computer Engineering, College of Information and Communication Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
Sensors (Basel). 2024 Aug 11;24(16):5191. doi: 10.3390/s24165191.
To achieve Level 4 and above autonomous driving, a robust and stable autonomous driving system is essential to adapt to various environmental changes. This paper aims to perform vehicle pose estimation, a crucial element in forming autonomous driving systems, more universally and robustly. The prevalent method for vehicle pose estimation in autonomous driving systems relies on Real-Time Kinematic (RTK) sensor data, ensuring accurate location acquisition. However, due to the characteristics of RTK sensors, precise positioning is challenging or impossible in indoor spaces or areas with signal interference, leading to inaccurate pose estimation and hindering autonomous driving in such scenarios. This paper proposes a method to overcome these challenges by leveraging objects registered in a high-precision map. The proposed approach involves creating a semantic high-definition (HD) map with added objects, forming object-centric features, recognizing locations using these features, and accurately estimating the vehicle's pose from the recognized location. This proposed method enhances the precision of vehicle pose estimation in environments where acquiring RTK sensor data is challenging, enabling more robust and stable autonomous driving. The paper demonstrates the proposed method's effectiveness through simulation and real-world experiments, showcasing its capability for more precise pose estimation.
为了实现4级及以上的自动驾驶,一个强大且稳定的自动驾驶系统对于适应各种环境变化至关重要。本文旨在更普遍、更稳健地执行车辆姿态估计,这是构成自动驾驶系统的关键要素。自动驾驶系统中用于车辆姿态估计的普遍方法依赖于实时动态(RTK)传感器数据,以确保准确获取位置。然而,由于RTK传感器的特性,在室内空间或信号干扰区域进行精确定位具有挑战性或无法实现,这会导致姿态估计不准确,并在这种场景下阻碍自动驾驶。本文提出了一种通过利用高精度地图中注册的物体来克服这些挑战的方法。所提出的方法包括创建一个添加了物体的语义高清(HD)地图,形成以物体为中心的特征,使用这些特征识别位置,并从识别出的位置准确估计车辆的姿态。该方法提高了在获取RTK传感器数据具有挑战性的环境中车辆姿态估计的精度,从而实现更稳健、更稳定的自动驾驶。本文通过模拟和实际实验证明了所提出方法的有效性,展示了其进行更精确姿态估计的能力。