Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan.
JST PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
ACS Appl Mater Interfaces. 2024 Jan 17;16(2):2110-2119. doi: 10.1021/acsami.3c14714. Epub 2023 Dec 23.
RNA and DNA delivery technologies using lipid nanoparticles (LNPs) have advanced significantly, as demonstrated by their successful application in mRNA vaccines. To date, commercially available RNA therapeutics include Onpattro, a 21 bp siRNA, and mRNA vaccines comprising 4300 nucleotides for COVID-19. However, a significant challenge remains in achieving efficient transfection, as the size of the delivered RNA and DNA increases. In contrast to RNA transfection, plasmid DNA (pDNA) transfection requires multiple steps, including cellular uptake, endosomal escape, nuclear translocation, transcription, and translation. The low transfection efficiency of large pDNA is a critical limitation in the development of artificial cells and their cellular functionalization. Here, we introduce polymer-lipid hybrid nanoparticles designed for efficient, large-sized pDNA transfection. We demonstrated that LNPs loaded with positively charged pDNA-polycation core nanoparticles exhibited a 4-fold increase in transfection efficiency for 15 kbp pDNA compared with conventional LNPs, which encapsulate a negatively charged pDNA-polycation core. Based on assessments of the size and internal structure of the polymer-lipid nanoparticles as well as hemolysis and cellular uptake analysis, we propose a strategy to enhance large-sized pDNA transfection using LNPs. This approach holds promise for accelerating the in vivo delivery of large-sized pDNA and advancing the development of artificial cells.
利用脂质纳米颗粒(LNPs)的 RNA 和 DNA 递送技术已经取得了显著进展,这在 mRNA 疫苗的成功应用中得到了证明。迄今为止,商业化的 RNA 疗法包括 Onpattro,一种 21 个碱基对的 siRNA,以及用于 COVID-19 的包含 4300 个核苷酸的 mRNA 疫苗。然而,在实现高效转染方面仍然存在重大挑战,因为递送到细胞内的 RNA 和 DNA 的尺寸增加了。与 RNA 转染不同,质粒 DNA(pDNA)转染需要多个步骤,包括细胞摄取、内涵体逃逸、核易位、转录和翻译。大 pDNA 的低转染效率是人工细胞及其细胞功能化发展的一个关键限制。在这里,我们引入了用于高效转染大尺寸 pDNA 的聚合物-脂质杂化纳米颗粒。我们证明,与传统的 LNPs 相比,负载带正电荷的 pDNA-聚阳离子核心纳米颗粒的 LNPs 对 15 kbp pDNA 的转染效率提高了 4 倍,而传统的 LNPs 则包封带负电荷的 pDNA-聚阳离子核心。基于对聚合物-脂质纳米颗粒的大小和内部结构以及溶血和细胞摄取分析的评估,我们提出了一种使用 LNPs 增强大尺寸 pDNA 转染的策略。这种方法有望加速大尺寸 pDNA 的体内递送,并推进人工细胞的发展。