Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139.
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139.
Proc Natl Acad Sci U S A. 2024 Mar 12;121(11):e2307809121. doi: 10.1073/pnas.2307809121. Epub 2024 Mar 4.
Rapid advances in nucleic acid therapies highlight the immense therapeutic potential of genetic therapeutics. Lipid nanoparticles (LNPs) are highly potent nonviral transfection agents that can encapsulate and deliver various nucleic acid therapeutics, including but not limited to messenger RNA (mRNA), silencing RNA (siRNA), and plasmid DNA (pDNA). However, a major challenge of targeted LNP-mediated systemic delivery is the nanoparticles' nonspecific uptake by the liver and the mononuclear phagocytic system, due partly to the adsorption of endogenous serum proteins onto LNP surfaces. Tunable LNP surface chemistries may enable efficacious delivery across a range of organs and cell types. Here, we describe a method to electrostatically adsorb bioactive polyelectrolytes onto LNPs to create layered LNPs (LLNPs). LNP cores varying in nucleic acid cargo and component lipids were stably layered with four biologically relevant polyanions: hyaluronate (HA), poly-L-aspartate (PLD), poly-L-glutamate (PLE), and polyacrylate (PAA). We further investigated the impact of the four surface polyanions on the transfection and uptake of mRNA- and pDNA-loaded LNPs in cell cultures. PLD- and PLE-LLNPs increased mRNA transfection twofold over unlayered LNPs in immune cells. HA-LLNPs increased pDNA transfection rates by more than twofold in epithelial and immune cells. In a healthy C57BL/6 murine model, PLE- and HA-LLNPs increased transfection by 1.8-fold to 2.5-fold over unlayered LNPs in the liver and spleen. These results suggest that LbL assembly is a generalizable, highly tunable platform to modify the targeting specificity, stability, and transfection efficacy of LNPs, as well as incorporate other charged targeting and therapeutic molecules into these systems.
核酸疗法的快速发展凸显了基因治疗的巨大治疗潜力。脂质纳米粒 (LNP) 是一种高效的非病毒转染剂,可包裹并递送各种核酸治疗药物,包括但不限于信使 RNA (mRNA)、沉默 RNA (siRNA) 和质粒 DNA (pDNA)。然而,靶向 LNP 介导的系统递送的一个主要挑战是纳米颗粒被肝脏和单核吞噬细胞系统非特异性摄取,部分原因是内源性血清蛋白吸附在 LNP 表面。可调谐的 LNP 表面化学可实现高效递送到一系列器官和细胞类型。在这里,我们描述了一种将生物活性聚电解质静电吸附到 LNP 上以创建层状 LNP (LLNP) 的方法。LNP 核心可改变核酸货物和组分脂质,并与四种生物相关的聚阴离子稳定分层:透明质酸 (HA)、聚-L-天冬氨酸 (PLD)、聚-L-谷氨酸 (PLE) 和聚丙烯酸 (PAA)。我们进一步研究了四种表面聚阴离子对细胞培养中负载 mRNA 和 pDNA 的 LNP 的转染和摄取的影响。PLD 和 PLE-LLNP 在免疫细胞中使 mRNA 转染增加了两倍,超过未分层的 LNP。HA-LLNP 使上皮细胞和免疫细胞中的 pDNA 转染率提高了两倍以上。在健康的 C57BL/6 小鼠模型中,PLE 和 HA-LLNP 在肝脏和脾脏中的转染率比未分层的 LNP 分别提高了 1.8 倍至 2.5 倍。这些结果表明,LbL 组装是一种可广泛应用的、高度可调的平台,可修饰 LNP 的靶向特异性、稳定性和转染效率,并将其他带电荷的靶向和治疗分子纳入这些系统。