School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632 014, India.
School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632 014, India.
Anaerobe. 2024 Feb;85:102815. doi: 10.1016/j.anaerobe.2023.102815. Epub 2023 Dec 23.
Biogas production from Lignocellulosic Biomass (LB) via anaerobic digestion (AD) has gained attention for its potential in self-sustainability. However, the recalcitrance of LB cell walls pose a challenge to its degradability and biogas generation. Therefore, pretreatment of LB is necessary to enhance lignin removal and increase degradability. Among the different approaches, environmentally friendly biological pretreatment ispromising as it avoids the production of inhibitors. The ruminal microbial community, including anaerobic fungi, bacteria, and protozoa, has shown an ability to effectively degrade LB through biomechanical and microbial penetration of refractory cell structures. In this review, we provide an overview of ruminant microbes dominating LB's AD, their degradation mechanism, and the bioaugmentation of the rumen. We also explore the potential cultivation of anaerobic fungi from the rumen, their enzyme potential, and their role in AD. The rumen ecosystem, comprising both bacteria and fungi, plays a crucial role in enhancing AD. This comprehensive review delves into the intricacies of ruminant microorganisms' adhesion to plant cells, elucidates degradation mechanisms, and explores integrated pretreatment approaches for the effective utilization of LB, minimizing the impact of inhibitors. The discussion underscores the considerable potential of ruminant microbes in pretreating LB, paving the way for sustainable biogas production. Optimizing fungal colonization and ligninolytic enzyme production, such as manganese peroxidase and laccase, significantly enhances the efficiency of fungal pretreatment. Integrating anaerobic fungi through bioaugmentation during mainstream processing demonstrably increases methane production. This study opens promising avenues for further research and development of these microorganisms for bioenergy production.
利用厌氧消化(AD)从木质纤维素生物质(LB)生产沼气因其自我可持续性而受到关注。然而,LB 细胞壁的顽固性对其可降解性和沼气生成构成了挑战。因此,需要对 LB 进行预处理以提高木质素去除率并增加可降解性。在不同的方法中,环保的生物预处理很有前途,因为它避免了抑制剂的产生。瘤胃微生物群落,包括厌氧真菌、细菌和原生动物,已经显示出通过生物力学和微生物穿透难降解细胞结构有效降解 LB 的能力。在这篇综述中,我们概述了主导 LB 的 AD 的反刍动物微生物、它们的降解机制以及瘤胃的生物强化。我们还探讨了从瘤胃中培养厌氧真菌的潜力、它们的酶潜力以及它们在 AD 中的作用。由细菌和真菌组成的瘤胃生态系统在增强 AD 方面发挥着关键作用。本综述深入探讨了反刍动物微生物对植物细胞的附着的复杂性,阐明了降解机制,并探讨了集成预处理方法,以有效利用 LB,最大限度地减少抑制剂的影响。讨论强调了反刍动物微生物在预处理 LB 方面的巨大潜力,为可持续沼气生产铺平了道路。优化真菌定植和木质素降解酶的产生,如锰过氧化物酶和漆酶,显著提高了真菌预处理的效率。通过在主流处理过程中进行生物强化来整合厌氧真菌,可明显增加甲烷的产生。这项研究为进一步研究和开发这些微生物用于生物能源生产开辟了有希望的途径。