Department of Genetic, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas-UNICAMP, São Paulo, Brazil.
Department of Biochemistry, University of Cambridge, Cambridge, UK.
Plant Biotechnol J. 2024 Mar;22(3):587-601. doi: 10.1111/pbi.14207. Epub 2023 Dec 25.
There is an increasing need for renewable energy sources to replace part of our fossil fuel-based economy and reduce greenhouse gas emission. Sugarcane bagasse is a prominent feedstock to produce cellulosic bioethanol, but strategies are still needed to improve the cost-effective exploitation of this potential energy source. In model plants, it has been shown that GUX genes are involved in cell wall hemicellulose decoration, adding glucuronic acid substitutions on the xylan backbone. Mutation of GUX genes increases enzyme access to cell wall polysaccharides, reducing biomass recalcitrance in Arabidopsis thaliana. Here, we characterized the sugarcane GUX genes and silenced GUX2 in commercial hybrid sugarcane. The transgenic lines had no penalty in development under greenhouse conditions. The sugarcane GUX1 and GUX2 enzymes generated different patterns of xylan glucuronidation, suggesting they may differently influence the molecular interaction of xylan with cellulose and lignin. Studies using biomass without chemical or steam pretreatment showed that the cell wall polysaccharides, particularly xylan, were less recalcitrant in sugarcane with GUX2 silenced than in WT plants. Our findings suggest that manipulation of GUX in sugarcane can reduce the costs of second-generation ethanol production and enhance the contribution of biofuels to lowering the emission of greenhouse gases.
对可再生能源的需求日益增长,以替代我们部分基于化石燃料的经济,并减少温室气体排放。甘蔗渣是生产纤维素生物乙醇的主要原料,但仍需要策略来提高这种潜在能源的经济可行性开发。在模式植物中,已经表明 GUX 基因参与细胞壁半纤维素的修饰,在木聚糖骨架上添加葡萄糖醛酸取代物。GUX 基因的突变增加了酶对细胞壁多糖的可及性,从而降低了拟南芥生物质的抗降解性。在这里,我们对甘蔗 GUX 基因进行了表征,并在商业杂交甘蔗中沉默了 GUX2。在温室条件下,转基因系的发育没有受到影响。甘蔗 GUX1 和 GUX2 酶产生了不同的木聚糖糖醛酸化模式,表明它们可能以不同的方式影响木聚糖与纤维素和木质素的分子相互作用。在不使用化学或蒸汽预处理的生物质研究中,沉默 GUX2 的甘蔗的细胞壁多糖,特别是木聚糖,比 WT 植物的抗降解性更低。我们的研究结果表明,在甘蔗中操纵 GUX 可以降低第二代乙醇生产的成本,并提高生物燃料对降低温室气体排放的贡献。