基于诊断前病史和临床特征识别脑肿瘤患者的亚型:一项初步的层次聚类和关联分析。
Identifying brain tumor patients' subtypes based on pre-diagnostic history and clinical characteristics: a pilot hierarchical clustering and association analysis.
作者信息
Esposito Simona, Ruggiero Emilia, Di Castelnuovo Augusto, Costanzo Simona, Bonaccio Marialaura, Bracone Francesca, Esposito Vincenzo, Innocenzi Gualtiero, Paolini Sergio, Cerletti Chiara, Donati Maria Benedetta, de Gaetano Giovanni, Iacoviello Licia, Gialluisi Alessandro
机构信息
Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, Italy.
Mediterranea Cardiocentro, Napoli, Italy.
出版信息
Front Oncol. 2023 Nov 29;13:1276253. doi: 10.3389/fonc.2023.1276253. eCollection 2023.
INTRODUCTION
Central nervous system (CNS) tumors are severe health conditions with increasing incidence in the last years. Different biological, environmental and clinical factors are thought to have an important role in their epidemiology, which however remains unclear.
OBJECTIVE
The aim of this pilot study was to identify CNS tumor patients' subtypes based on this information and to test associations with tumor malignancy.
METHODS
90 patients with suspected diagnosis of CNS tumor were recruited by the Neurosurgery Unit of IRCCS Neuromed. Patients underwent anamnestic and clinical assessment, to ascertain known or suspected risk factors including lifestyle, socioeconomic, clinical and psychometric characteristics. We applied a hierarchical clustering analysis to these exposures to identify potential groups of patients with a similar risk pattern and tested whether these clusters associated with brain tumor malignancy.
RESULTS
Out of 67 patients with a confirmed CNS tumor diagnosis, we identified 28 non-malignant and 39 malignant tumor cases. These subtypes showed significant differences in terms of gender (with men more frequently presenting a diagnosis of cancer; p = 6.0 ×10) and yearly household income (with non-malignant tumor patients more frequently earning ≥25k Euros/year; p = 3.4×10). Cluster analysis revealed the presence of two clusters of patients: one (N=41) with more professionally active, educated, wealthier and healthier patients, and the other one with mostly retired and less healthy men, with a higher frequency of smokers, personal history of cardiovascular disease and cancer familiarity, a mostly sedentary lifestyle and generally lower income, education and cognitive performance. The former cluster showed a protective association with the malignancy of the disease, with a 74 (14-93) % reduction in the prevalent risk of CNS malignant tumors, compared to the other cluster (p=0.026).
DISCUSSION
These preliminary data suggest that patients' profiling through unsupervised machine learning approaches may somehow help predicting the risk of being affected by a malignant form. If confirmed by further analyses in larger independent cohorts, these findings may be useful to create potential intelligent ranking systems for treatment priority, overcoming the lack of histopathological information and molecular diagnosis of the tumor, which are typically not available until the time of surgery.
引言
中枢神经系统(CNS)肿瘤是严重的健康问题,在过去几年中发病率不断上升。不同的生物学、环境和临床因素被认为在其流行病学中起重要作用,但其流行病学情况仍不清楚。
目的
本试点研究的目的是根据这些信息确定中枢神经系统肿瘤患者的亚型,并测试与肿瘤恶性程度的关联。
方法
IRCCS Neuromed神经外科招募了90例疑似中枢神经系统肿瘤的患者。患者接受了既往史和临床评估,以确定已知或疑似的风险因素,包括生活方式、社会经济、临床和心理测量特征。我们对这些暴露因素进行了层次聚类分析,以识别具有相似风险模式的潜在患者群体,并测试这些聚类是否与脑肿瘤恶性程度相关。
结果
在67例确诊为中枢神经系统肿瘤的患者中,我们识别出28例非恶性肿瘤和39例恶性肿瘤病例。这些亚型在性别(男性更常被诊断为癌症;p = 6.0×10)和家庭年收入方面存在显著差异(非恶性肿瘤患者年收入≥25000欧元的频率更高;p = 3.4×10)。聚类分析显示存在两类患者:一类(N = 41)患者职业活动更多、受过教育、更富有且更健康,另一类主要是退休且健康状况较差的男性,吸烟者、有心血管疾病个人史和癌症家族史的频率更高,大多久坐不动的生活方式以及总体较低的收入、教育水平和认知能力。与另一类相比,前一类与疾病的恶性程度呈保护性关联,中枢神经系统恶性肿瘤的患病风险降低了74(14 - 93)%(p = 0.026)。
讨论
这些初步数据表明,通过无监督机器学习方法对患者进行特征分析可能在某种程度上有助于预测患恶性肿瘤的风险。如果在更大的独立队列中通过进一步分析得到证实,这些发现可能有助于创建潜在的智能排序系统以确定治疗优先级,克服肿瘤组织病理学信息和分子诊断的缺乏,这些通常在手术时才可得。
相似文献
Cochrane Database Syst Rev. 2022-2-1
Turk Psikiyatri Derg. 2022
JMIR Med Inform. 2020-5-28
Epidemiol Prev. 2013
Early Hum Dev. 2020-11
J Egypt Natl Canc Inst. 2008-12
本文引用的文献
Int J Mol Sci. 2023-3-6
Neurol Clin. 2018-6-15
Nat Rev Clin Oncol. 2017-11-8