Zhang Manhong, Cai Jianfeng, Gao Feng, Zhang Zongwei, Li Mancang, Chen Zhiyu, Wang Yu, Hu Ding, Tan Xiaojian, Liu Guoqiang, Yue Song, Jiang Jun
Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou 510632, China.
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
ACS Appl Mater Interfaces. 2024 Jan 10;16(1):907-914. doi: 10.1021/acsami.3c16495. Epub 2023 Dec 26.
Entropy engineering is aneffective scheme to reduce the thermal conductivity of thermoelectric materials, but it inevitably deteriorates the carrier mobility. Here, we report the optimization of thermoelectric performance of PbTe by combining entropy engineering and nanoprecipitates. In the continuously tuned compounds of PbNaTeSSe, we show that the = 0.05 sample exhibits an exceptionally low thermal conductivity relative to its configuration entropy. By introducing Mn doping, the produced temperature-dependent nanoprecipitates of MnSe cause the high-temperature thermal conductivity to be further reduced. A very low lattice thermal conductivity of 0.38 W m K is achieved at 825 K. Meanwhile, the carrier mobility of the samples is only slightly influenced, owing to the well-controlled configuration entropy and the size of nanoprecipitates. Finally, a high peak of ∼2.1 at 825 K is obtained in the PbNaMnTeSSe alloy.
熵工程是降低热电材料热导率的有效方案,但不可避免地会降低载流子迁移率。在此,我们报告通过结合熵工程和纳米沉淀来优化PbTe的热电性能。在连续调谐的PbNaTeSSe化合物中,我们表明,x = 0.05的样品相对于其组态熵表现出极低的热导率。通过引入Mn掺杂,所产生的随温度变化的MnSe纳米沉淀导致高温热导率进一步降低。在825 K时实现了非常低的晶格热导率0.38 W m⁻¹ K⁻¹。同时,由于组态熵和纳米沉淀尺寸得到良好控制,样品的载流子迁移率仅受到轻微影响。最后,在PbNaMnTeSSe合金中于825 K时获得了约2.1的高优值系数峰值。