文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用 AI 提高医学问题生成效率和效果的 12 个技巧:Chat GPT 教学应用指南

Twelve tips to leverage AI for efficient and effective medical question generation: A guide for educators using Chat GPT.

机构信息

Department of Pharmacology, National University of Singapore, Yong Loo Lin School of Medicine, Singapore, Singapore.

出版信息

Med Teach. 2024 Aug;46(8):1021-1026. doi: 10.1080/0142159X.2023.2294703. Epub 2023 Dec 26.


DOI:10.1080/0142159X.2023.2294703
PMID:38146711
Abstract

BACKGROUND: Crafting quality assessment questions in medical education is a crucial yet time-consuming, expertise-driven undertaking that calls for innovative solutions. Large language models (LLMs), such as ChatGPT (Chat Generative Pre-Trained Transformer), present a promising yet underexplored avenue for such innovations. AIMS: This study explores the utility of ChatGPT to generate diverse, high-quality medical questions, focusing on multiple-choice questions (MCQs) as an illustrative example, to increase educator's productivity and enable self-directed learning for students. DESCRIPTION: Leveraging 12 strategies, we demonstrate how ChatGPT can be effectively used to generate assessment questions aligned with Bloom's taxonomy and core knowledge domains while promoting best practices in assessment design. CONCLUSION: Integrating LLM tools like ChatGPT into generating medical assessment questions like MCQs augments but does not replace human expertise. With continual instruction refinement, AI can produce high-standard questions. Yet, the onus of ensuring ultimate quality and accuracy remains with subject matter experts, affirming the irreplaceable value of human involvement in the artificial intelligence-driven education paradigm.

摘要

背景:在医学教育中编写高质量的评估问题是一项至关重要但耗时、需要专业知识的任务,需要创新的解决方案。大型语言模型(LLM),如 ChatGPT(聊天生成预训练转换器),为这种创新提供了一个有前途但尚未充分探索的途径。

目的:本研究探讨了 ChatGPT 在生成多样化、高质量医学问题方面的效用,重点是多项选择题(MCQ)作为一个说明性示例,以提高教育者的生产力,并为学生提供自我指导学习的能力。

描述:利用 12 种策略,我们展示了如何有效地使用 ChatGPT 生成符合布鲁姆分类法和核心知识领域的评估问题,同时促进评估设计的最佳实践。

结论:将 LLM 工具(如 ChatGPT)集成到生成医学评估问题(如 MCQ)中,可以增强但不能替代人类专业知识。通过不断的指令改进,人工智能可以生成高标准的问题。然而,确保最终质量和准确性的责任仍然在于主题专家,这肯定了人类在人工智能驱动的教育范式中的不可或缺的价值。

相似文献

[1]
Twelve tips to leverage AI for efficient and effective medical question generation: A guide for educators using Chat GPT.

Med Teach. 2024-8

[2]
Performance of ChatGPT Across Different Versions in Medical Licensing Examinations Worldwide: Systematic Review and Meta-Analysis.

J Med Internet Res. 2024-7-25

[3]
Crafting medical MCQs with generative AI: A how-to guide on leveraging ChatGPT.

GMS J Med Educ. 2024

[4]
Assessing ChatGPT's Mastery of Bloom's Taxonomy Using Psychosomatic Medicine Exam Questions: Mixed-Methods Study.

J Med Internet Res. 2024-1-23

[5]
Comparing the performance of artificial intelligence learning models to medical students in solving histology and embryology multiple choice questions.

Ann Anat. 2024-6

[6]
Effectiveness of AI-powered Chatbots in responding to orthopaedic postgraduate exam questions-an observational study.

Int Orthop. 2024-8

[7]
Reshaping medical education: Performance of ChatGPT on a PES medical examination.

Cardiol J. 2024

[8]
Large language models for generating medical examinations: systematic review.

BMC Med Educ. 2024-3-29

[9]
Artificial intelligence and medical education: application in classroom instruction and student assessment using a pharmacology & therapeutics case study.

BMC Med Educ. 2024-4-22

[10]
ChatGPT-A double-edged sword for healthcare education? Implications for assessments of dental students.

Eur J Dent Educ. 2024-2

引用本文的文献

[1]
Application and ethical implication of generative artificial intelligence in medical education: a cross-sectional study among critical care academic physicians in China.

BMC Med Educ. 2025-8-29

[2]
Evaluating large language models as graders of medical short answer questions: a comparative analysis with expert human graders.

Med Educ Online. 2025-12

[3]
Evaluating AI-generated examination papers in periodontology: a comparative study with human-designed counterparts.

BMC Med Educ. 2025-7-23

[4]
OpenAI o1 Large Language Model Outperforms GPT-4o, Gemini 1.5 Flash, and Human Test Takers on Ophthalmology Board-Style Questions.

Ophthalmol Sci. 2025-6-6

[5]
The application of problem-based learning (PBL) guided by ChatGPT in clinical education in the Department of Nephrology.

BMC Med Educ. 2025-7-14

[6]
To take a different approach: Can large language models provide knowledge related to respiratory aspiration?

Digit Health. 2025-7-10

[7]
Quantum leap in medical mentorship: exploring ChatGPT's transition from textbooks to terabytes.

Front Med (Lausanne). 2025-4-28

[8]
Delving into the Practical Applications and Pitfalls of Large Language Models in Medical Education: Narrative Review.

Adv Med Educ Pract. 2025-4-18

[9]
Using a Hybrid of AI and Template-Based Method in Automatic Item Generation to Create Multiple-Choice Questions in Medical Education: Hybrid AIG.

JMIR Form Res. 2025-4-4

[10]
Potential of Large Language Models in Generating Multiple-Choice Questions for the Japanese National Licensure Examination for Physical Therapists.

Cureus. 2025-2-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索