Kıyak Yavuz Selim, Kononowicz Andrzej A
Department of Medical Education and Informatics, Faculty of Medicine, Gazi University, Ankara, Turkey.
Department of Bioinformatics and Telemedicine, Jagiellonian University Medical College, Medyczna Str 7, Kraków, 30-688, Poland, 48 12 3476908.
JMIR Form Res. 2025 Apr 4;9:e65726. doi: 10.2196/65726.
Template-based automatic item generation (AIG) is more efficient than traditional item writing but it still heavily relies on expert effort in model development. While nontemplate-based AIG, leveraging artificial intelligence (AI), offers efficiency, it faces accuracy challenges. Medical education, a field that relies heavily on both formative and summative assessments with multiple choice questions, is in dire need of AI-based support for the efficient automatic generation of items.
We aimed to propose a hybrid AIG to demonstrate whether it is possible to generate item templates using AI in the field of medical education.
This is a mixed-methods methodological study with proof-of-concept elements. We propose the hybrid AIG method as a structured series of interactions between a human subject matter expert and AI, designed as a collaborative authoring effort. The method leverages AI to generate item models (templates) and cognitive models to combine the advantages of the two AIG approaches. To demonstrate how to create item models using hybrid AIG, we used 2 medical multiple-choice questions: one on respiratory infections in adults and another on acute allergic reactions in the pediatric population.
The hybrid AIG method we propose consists of 7 steps. The first 5 steps are performed by an expert in a customized AI environment. These involve providing a parent item, identifying elements for manipulation, selecting options and assigning values to elements, and generating the cognitive model. After a final expert review (Step 6), the content in the template can be used for item generation through a traditional (non-AI) software (Step 7). We showed that AI is capable of generating item templates for AIG under the control of a human expert in only 10 minutes. Leveraging AI in template development made it less challenging.
The hybrid AIG method transcends the traditional template-based approach by marrying the "art" that comes from AI as a "black box" with the "science" of algorithmic generation under the oversight of expert as a "marriage registrar". It does not only capitalize on the strengths of both approaches but also mitigates their weaknesses, offering a human-AI collaboration to increase efficiency in medical education.
基于模板的自动试题生成(AIG)比传统的试题编写更高效,但在模型开发中仍严重依赖专家的努力。虽然利用人工智能(AI)的非基于模板的AIG提高了效率,但面临准确性挑战。医学教育领域严重依赖形成性和总结性评估中的多项选择题,迫切需要基于AI的支持来高效自动生成试题。
我们旨在提出一种混合AIG,以证明在医学教育领域使用AI生成试题模板是否可行。
这是一项带有概念验证元素的混合方法学研究。我们提出混合AIG方法,将其作为人类主题专家与AI之间一系列结构化的交互,设计为一种协作式编写工作。该方法利用AI生成试题模型(模板),并利用认知模型结合两种AIG方法的优势。为演示如何使用混合AIG创建试题模型,我们使用了两道医学多项选择题:一道关于成人呼吸道感染,另一道关于儿科人群的急性过敏反应。
我们提出的混合AIG方法包括7个步骤。前5个步骤由专家在定制的AI环境中执行。这些步骤包括提供母题、识别可操作元素、选择选项并为元素赋值,以及生成认知模型。经过专家的最终审核(第6步)后,模板中的内容可通过传统(非AI)软件用于试题生成(第7步)。我们表明,在人类专家的控制下,AI仅需10分钟就能为AIG生成试题模板。在模板开发中利用AI降低了难度。
混合AIG方法超越了传统的基于模板的方法,将作为“黑箱”的AI所带来 的“艺术”与在专家作为“婚姻登记员”监督下的算法生成的“科学”相结合。它不仅利用了两种方法的优势,还减轻了它们的弱点,提供了一种人机协作方式,以提高医学教育的效率。