Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States.
Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States.
Environ Sci Technol. 2024 Jan 9;58(1):421-431. doi: 10.1021/acs.est.3c05964. Epub 2023 Dec 26.
Microbially mediated cycling processes play central roles in regulating the speciation and availability of nitrogen, a vital nutrient with wide implications for agriculture, water quality, wastewater treatment, ecosystem health, and climate change. Ammonia oxidation, the first and rate-limiting step of nitrification, is carried out by bacteria (AOB) and archaea (AOA) that require the trace metal micronutrients copper (Cu) and iron (Fe) for growth and metabolic catalysis. While stable isotope analyses for constraining nitrogen cycling are commonly used, it is unclear whether metal availability may modulate expression of stable isotope fractionation during ammonia oxidation, by varying growth or through regulation of metabolic metalloenzymes. We present the first study examining the influence of Fe and Cu availability on the kinetic nitrogen isotope effect in ammonia oxidation (ε). We report a general independence of ε from the growth rate in AOB, except at a low temperature (10 °C). With AOA SCM1, however, ε decreases nonlinearly at lower oxidation rates. We examine assumptions involved in the interpretation of ε values and suggest these dynamics may arise from physiological constraints that push the system toward isotopic equilibrium. These results suggest important links between isotope fractionation and environmental constraints on physiology in these key N cycling microorganisms.
微生物介导的循环过程在调节氮的物种形成和可用性方面起着核心作用,氮是一种对农业、水质、废水处理、生态系统健康和气候变化都有广泛影响的重要营养物质。氨氧化作用是硝化作用的第一步和限速步骤,由需要痕量金属微量元素铜(Cu)和铁(Fe)来生长和代谢催化的细菌(AOB)和古菌(AOA)进行。虽然稳定同位素分析常用于约束氮循环,但尚不清楚金属的可用性是否会通过改变生长或通过调节代谢金属酶来调节氨氧化过程中的稳定同位素分馏的表达。我们提出了第一个研究,探讨了铁和铜的可用性对氨氧化动力学氮同位素效应(ε)的影响。我们报告了 AOB 中ε一般与生长速率无关,除了在低温(10°C)下。然而,对于 AOA SCM1,ε在较低的氧化速率下呈非线性下降。我们检查了ε值解释中涉及的假设,并提出这些动态可能是由于生理限制将系统推向同位素平衡。这些结果表明,在这些关键的氮循环微生物中,同位素分馏与对生理的环境限制之间存在重要联系。