Suppr超能文献

采用 RPLC-ESI-QTOF-MS 结合碰撞诱导解离的直接砷检测对砷脂质进行简化鉴定。

Streamlined Arsenolipid Identification via Direct Arsenic Detection Using RPLC-ESI-QTOF-MS with Collision-Induced Dissociation.

机构信息

School of Geosciences, University of Oklahoma, 100 E. Boyd Street, Norman, Oklahoma 73019, United States.

出版信息

J Am Soc Mass Spectrom. 2024 Feb 7;35(2):300-306. doi: 10.1021/jasms.3c00367. Epub 2023 Dec 26.

Abstract

Arsenolipids are organoarsenicals with a long aliphatic chain that have been identified in a wide array of marine organisms. Precise analysis of arsenolipids is crucial for evaluating their toxicity, ensuring food safety, monitoring the environment, and gaining insights into the evolution of arsenic biogeochemistry. However, the discovery of new arsenolipids is often impeded by existing analytical challenges, notably the need for multiple instruments, such as the combination of liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS) and inductively coupled plasma mass spectrometry (LC-ICP-MS). This study introduces a high-throughput untargeted analytical method on the basis of an unsophisticated instrumental configuration, LC-ESI-MS with collision-induced dissociation (CID) at 200 eV. This approach provides efficient dissociation of arsenic atoms from their precursor lipids and direct detection of the organic-bound arsenic as monatomic cations, As. Application of this method has shown promise in rapidly characterizing arsenolipids in diverse samples, which has led to the discovery of a wide range of novel arsenolipids, including seven previously unidentified thioxoarsenolipids in ancient marine sediments.

摘要

砷脂是一类具有长脂肪族链的有机砷化合物,已在多种海洋生物中被发现。准确分析砷脂对于评估其毒性、确保食品安全、监测环境以及深入了解砷地球化学演化至关重要。然而,新砷脂的发现常常受到现有分析挑战的阻碍,特别是需要多种仪器,如液相色谱-电喷雾电离质谱(LC-ESI-MS)和电感耦合等离子体质谱(LC-ICP-MS)的组合。本研究在简单的仪器配置基础上,引入了一种高通量的非靶向分析方法,即 200 eV 碰撞诱导解离(CID)的 LC-ESI-MS。该方法能够有效地将砷原子从其前体脂质中解离出来,并直接检测有机结合的砷作为单价阳离子 As。该方法在快速分析不同样品中的砷脂方面表现出了良好的应用前景,已发现了广泛的新型砷脂,包括在古老海洋沉积物中发现的七种先前未鉴定的硫代砷脂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验