Suppr超能文献

用于光催化能量转换的先进导电金属有机框架

Advancing Electrically Conductive Metal-Organic Frameworks for Photocatalytic Energy Conversion.

作者信息

Fang Xiaoyu, Choi Ji Yong, Stodolka Michael, Pham Hoai T B, Park Jihye

机构信息

Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States.

出版信息

Acc Chem Res. 2024 Aug 20;57(16):2316-2325. doi: 10.1021/acs.accounts.4c00280. Epub 2024 Aug 7.

Abstract

ConspectusPhotocatalytic energy conversion is a pivotal process for harnessing solar energy to produce chemicals and presents a sustainable alternative to fossil fuels. Key strategies to enhance photocatalytic efficiency include facilitating mass transport and reactant adsorption, improving light absorption, and promoting electron and hole separation to suppress electron-hole recombination. This Account delves into the potential advantages of electrically conductive metal-organic frameworks (EC-MOFs) in photocatalytic energy conversion and examines how manipulating electronic structures and controlling morphology and defects affect their unique properties, potentially impacting photocatalytic efficiency and selectivity. Moreover, with a proof-of-concept study of photocatalytic hydrogen peroxide production by manipulating the EC-MOF's electronic structure, we highlight the potential of the strategies outlined in this Account.EC-MOFs not only possess porosity and surface areas like conventional MOFs, but exhibit electronic conductivity through d-p conjugation between ligands and metal nodes, enabling effective charge transport. Their narrow band gaps also allow for visible light absorption, making them promising candidates for efficient photocatalysts. In EC-MOFs, the modular design of metal nodes and ligands allows fine-tuning of both the electronic structure and physical properties, including controlling the particle morphology, which is essential for optimizing band positions and improving charge transport to achieve efficient and selective photocatalytic energy conversion.Despite their potential as photocatalysts, modulating the electronic structure or controlling the morphology of EC-MOFs is nontrivial, as their fast growth kinetics make them prone to defect formation, impacting mass and charge transport. To fully leverage the photocatalytic potential of EC-MOFs, we discuss our group's efforts to manipulate their electronic structures and develop effective synthetic strategies for morphology control and defect healing. For tuning electronic structures, diversifying the combinations of metals and linkers available for EC-MOF synthesis has been explored. Next, we suggest that synthesizing ligand-based solid solutions will enable continuous tuning of the band positions, demonstrating the potential to distinguish between photocatalytic reactions with similar redox potentials. Lastly, we present incorporating a donor-acceptor system in an EC-MOF to spatially separate photogenerated carriers, which could suppress electron-hole recombination. As a synthetic strategy for morphology control, we demonstrated that electrosynthesis can modify particle morphology, enhancing electrochemical surface area, which will be beneficial for reactant adsorption. Finally, we suggest a defect healing strategy that will enhance charge transport by reducing charge traps on defects, potentially improving the photocatalytic efficiency.Our vision in this Account is to introduce EC-MOFs as an efficient platform for photocatalytic energy conversion. Although EC-MOFs are a new class of semiconductor materials and have not been extensively studied for photocatalytic energy conversion, their inherent light absorption and electron transport properties indicate significant photocatalytic potential. We envision that employing modular molecular design to control electronic structures and applying effective synthetic strategies to customize morphology and defect repair can promote charge separation, electron transfer to potential reactants, and mass transport to realize high selectivity and efficiency in EC-MOF-based photocatalysts. This effort not only lays the foundation for the rational design and synthesis of EC-MOFs, but has the potential to advance their use in photocatalytic energy conversion.

摘要

综述

光催化能量转换是利用太阳能生产化学品的关键过程,是化石燃料的可持续替代方案。提高光催化效率的关键策略包括促进传质和反应物吸附、改善光吸收以及促进电子和空穴分离以抑制电子 - 空穴复合。本综述深入探讨了导电金属有机框架(EC - MOF)在光催化能量转换中的潜在优势,并研究了如何操纵电子结构以及控制形态和缺陷来影响其独特性能,这可能会影响光催化效率和选择性。此外,通过对通过操纵EC - MOF的电子结构进行光催化过氧化氢生产的概念验证研究,我们突出了本综述中概述策略的潜力。

EC - MOF不仅具有与传统MOF类似的孔隙率和表面积,还通过配体与金属节点之间的d - p共轭表现出电子导电性,从而实现有效的电荷传输。它们狭窄的带隙也允许可见光吸收,使其成为高效光催化剂的有前途的候选者。在EC - MOF中,金属节点和配体的模块化设计允许对电子结构和物理性质进行微调,包括控制颗粒形态,这对于优化能带位置和改善电荷传输以实现高效和选择性的光催化能量转换至关重要。

尽管EC - MOF作为光催化剂具有潜力,但调节其电子结构或控制其形态并非易事,因为它们快速的生长动力学使其容易形成缺陷,从而影响质量和电荷传输。为了充分利用EC - MOF的光催化潜力,我们讨论了我们团队在操纵其电子结构以及开发用于形态控制和缺陷修复的有效合成策略方面所做的努力。对于调节电子结构,已经探索了使可用于EC - MOF合成的金属和连接体的组合多样化。接下来,我们建议合成基于配体的固溶体将能够连续调节能带位置,展示区分具有相似氧化还原电位的光催化反应的潜力。最后,我们提出在EC - MOF中引入供体 - 受体系统以在空间上分离光生载流子,这可以抑制电子 - 空穴复合。作为形态控制的合成策略,我们证明电合成可以改变颗粒形态,增加电化学表面积,这将有利于反应物吸附。最后,我们提出一种缺陷修复策略,该策略将通过减少缺陷上的电荷陷阱来增强电荷传输,从而有可能提高光催化效率。

我们在本综述中的愿景是将EC - MOF引入作为光催化能量转换的高效平台。尽管EC - MOF是一类新型半导体材料,尚未对其进行广泛的光催化能量转换研究,但其固有的光吸收和电子传输特性表明其具有显著的光催化潜力。我们设想采用模块化分子设计来控制电子结构,并应用有效的合成策略来定制形态和缺陷修复,以促进电荷分离、电子转移到潜在反应物以及传质,从而在基于EC - MOF的光催化剂中实现高选择性和效率。这项工作不仅为EC - MOF的合理设计和合成奠定了基础,而且有可能推动它们在光催化能量转换中的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验