Suppr超能文献

动力学溶解度:实验与机器学习建模视角

Kinetic solubility: Experimental and machine-learning modeling perspectives.

作者信息

Baybekov Shamkhal, Llompart Pierre, Marcou Gilles, Gizzi Patrick, Galzi Jean-Luc, Ramos Pascal, Saurel Olivier, Bourban Claire, Minoletti Claire, Varnek Alexandre

机构信息

Laboratoire de Chémoinformatique UMR 7140 CNRS, Institut Le Bel, University of Strasbourg, 4 Rue Blaise Pascal, 67081, Strasbourg, France.

IDD/CADD, Sanofi, Vitry-Sur-Seine, France.

出版信息

Mol Inform. 2024 Feb;43(2):e202300216. doi: 10.1002/minf.202300216. Epub 2024 Jan 23.

Abstract

Kinetic aqueous or buffer solubility is important parameter measuring suitability of compounds for high throughput assays in early drug discovery while thermodynamic solubility is reserved for later stages of drug discovery and development. Kinetic solubility is also considered to have low inter-laboratory reproducibility because of its sensitivity to protocol parameters [1]. Presumably, this is why little efforts have been put to build QSPR models for kinetic in comparison to thermodynamic aqueous solubility. Here, we investigate the reproducibility and modelability of kinetic solubility assays. We first analyzed the relationship between kinetic and thermodynamic solubility data, and then examined the consistency of data from different kinetic assays. In this contribution, we report differences between kinetic and thermodynamic solubility data that are consistent with those reported by others [1, 2] and good agreement between data from different kinetic solubility campaigns in contrast to general expectations. The latter is confirmed by achieving high performing QSPR models trained on merged kinetic solubility datasets. The poor performance of QSPR model trained on thermodynamic solubility when applied to kinetic solubility dataset reinforces the conclusion that kinetic and thermodynamic solubilities do not correlate: one cannot be used as an ersatz for the other. This encourages for building predictive models for kinetic solubility. The kinetic solubility QSPR model developed in this study is freely accessible through the Predictor web service of the Laboratory of Chemoinformatics (https://chematlas.chimie.unistra.fr/cgi-bin/predictor2.cgi).

摘要

动力学水相或缓冲液溶解度是衡量化合物在早期药物发现中适用于高通量分析的重要参数,而热力学溶解度则用于药物发现和开发的后期阶段。由于动力学溶解度对实验方案参数敏感,其在不同实验室间的重现性也被认为较低[1]。据推测,这就是相较于热力学水相溶解度,人们在构建动力学溶解度的定量构效关系(QSPR)模型方面投入较少的原因。在此,我们研究了动力学溶解度测定的重现性和可建模性。我们首先分析了动力学溶解度数据与热力学溶解度数据之间的关系,然后检查了来自不同动力学测定的数据的一致性。在本论文中,我们报告了动力学溶解度数据与热力学溶解度数据之间的差异,这些差异与其他人报告的结果一致[1, 2],并且与一般预期相反,不同动力学溶解度实验的数据之间具有良好的一致性。通过在合并的动力学溶解度数据集上训练得到高性能的QSPR模型,证实了后者。当将基于热力学溶解度训练的QSPR模型应用于动力学溶解度数据集时,其性能较差,这进一步强化了动力学溶解度和热力学溶解度不相关的结论:二者不能相互替代。这促使我们构建动力学溶解度的预测模型。本研究中开发的动力学溶解度QSPR模型可通过化学信息学实验室的Predictor网络服务免费获取(https://chematlas.chimie.unistra.fr/cgi-bin/predictor2.cgi)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验