Suppr超能文献

探索结直肠癌患者围手术期症状网络的动态变化:交叉滞后面板网络分析。

Exploring the dynamics of perioperative symptom networks in colorectal cancer patients: a cross-lagged panel network analysis.

机构信息

School of Medicine, Jiangsu University, No. 301 Xuefu Road, Jingkou District, Zhenjiang City, Jiangsu Province, China.

Department of Nursing, Jiangsu University Jingjiang College, Zhenjiang, China.

出版信息

Support Care Cancer. 2023 Dec 27;32(1):62. doi: 10.1007/s00520-023-08288-z.

Abstract

BACKGROUND

Colorectal cancer incidence is on the rise, necessitating precise symptom management. However, causal relationships among symptoms have been challenging to establish due to reliance on cross-sectional data. Cross-lagged panel network (CLPN) analysis offers a solution, leveraging longitudinal data for insight.

OBJECTIVE

We employed CLPN analysis to construct symptom networks in colorectal cancer patients at three perioperative time points, aiming to identify predictive relationships and intervention opportunities.

METHODS

We evaluated the prevalence and severity of symptoms throughout the perioperative period, encompassing T1 the first day of admission, T2 2-3 days postoperatively, and T3 discharge, utilizing the M. D. Anderson Symptom Inventory Gastrointestinal Cancer Module (MDASI-GI). To identify crucial nodes in the network and explore predictive and interactive effects among symptoms, CLPNs were constructed from longitudinal data in R.

RESULTS

The analysis revealed a stable network, with disturbed sleep exhibiting the highest out-EI (outgoing expected influence) during T1. Distress had a sustained impact throughout the perioperative. Disturbed sleep at T1 predicted T2 bloating, fatigue, distress, and pain. T1 distress predicted T2 sadness severity. T2 distress primarily predicted T3 fatigue, disturbed sleep, changes in taste, and bloating. T2 shortness of breath predicted T3 changes in taste and loss of appetite. Furthermore, biochemical markers like RBC and ALB had notable influence on symptom clusters during T1→T2 and T2→T3, respectively.

CONCLUSION

Prioritizing disturbed sleep during T1 and addressing distress throughout the perioperative phase is recommended. Effective symptom management not only breaks the chain of symptom progression, enhancing healthcare impact, but also eases patient symptom burdens.

摘要

背景

结直肠癌的发病率呈上升趋势,因此需要对其进行精确的症状管理。然而,由于依赖横断面数据,症状之间的因果关系一直难以确定。交叉滞后面板网络(CLPN)分析提供了一种解决方案,利用纵向数据来深入了解症状之间的关系。

目的

我们采用 CLPN 分析在三个围手术期时间点构建结直肠癌患者的症状网络,旨在确定预测关系和干预机会。

方法

我们使用 M. D.安德森症状清单胃肠道癌症模块(MDASI-GI)评估了围手术期内的症状发生率和严重程度,包括 T1 入院第一天,T2 术后 2-3 天和 T3 出院。为了识别网络中的关键节点并探索症状之间的预测和交互作用,我们在 R 中使用纵向数据构建了 CLPN。

结果

分析结果显示了一个稳定的网络,在 T1 期间,睡眠障碍的出度预期影响(outgoing expected influence,EI)最高。在围手术期内,困扰一直存在。T1 时的睡眠障碍预测了 T2 的腹胀、疲劳、困扰和疼痛。T1 时的困扰预测了 T2 时的悲伤严重程度。T2 时的困扰主要预测了 T3 时的疲劳、睡眠障碍、味觉改变和腹胀。T2 时的呼吸急促预测了 T3 时的味觉改变和食欲减退。此外,像 RBC 和 ALB 这样的生化标志物在 T1→T2 和 T2→T3 期间对症状簇有显著影响。

结论

建议在 T1 时优先处理睡眠障碍,并在整个围手术期内解决困扰。有效的症状管理不仅可以打破症状进展的链条,增强医疗保健的影响,还可以减轻患者的症状负担。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验