Koirala Rajendra Prasad, Adhikari Narayan Prasad
Central Department of Physics, Tribhuvan University, Kathmandu, Nepal.
J Biol Phys. 2024 Mar;50(1):71-87. doi: 10.1007/s10867-023-09649-9. Epub 2023 Dec 27.
Methyl damage to DNA bases is common in the cell nucleus. O6-alkylguanine-DNA alkyl transferase (AGT) may be a promising candidate for direct damage reversal in methylated DNA (mDNA) at the O6 point of the guanine. Indeed, atomic-level investigations in the contact region of AGT-DNA complex can provide an in-depth understanding of their binding mechanism, allowing to evaluate the silico-drug nature of AGT and its utility in removing methyl damage in DNA. In this study, molecular dynamics (MD) simulation was utilized to examine the flipping of methylated nucleotide, the binding mechanism between mDNA and AGT, and the comparison of binding strength prior and post methyl transfer to AGT. The study reveals that methylation at the O6 atom of guanine weakens the hydrogen bond (H-bond) between guanine and cytosine, permitting for the flipping of such nucleotide. The formation of a H-bond between the base pair of methylated nucleotide (i.e., cytosine) and the intercalated arginine of AGT also forces the nucleotide to rotate. Following that, electrostatics and van der Waals contacts as well as hydrogen bonding contribute to form the complex of DNA and protein. The stronger binding of AGT with DNA before methyl transfer creates the suitable condition to transfer methyl adduct from DNA to AGT.
DNA碱基的甲基化损伤在细胞核中很常见。O6-烷基鸟嘌呤-DNA烷基转移酶(AGT)可能是直接修复鸟嘌呤O6位点甲基化DNA(mDNA)损伤的一个有前景的候选者。事实上,对AGT-DNA复合物接触区域进行原子水平的研究可以深入了解它们的结合机制,从而评估AGT的计算机模拟药物性质及其在去除DNA甲基化损伤方面的效用。在本研究中,利用分子动力学(MD)模拟来研究甲基化核苷酸的翻转、mDNA与AGT之间的结合机制以及甲基转移至AGT前后结合强度的比较。研究表明,鸟嘌呤O6原子的甲基化削弱了鸟嘌呤与胞嘧啶之间的氢键(H键),使得该核苷酸能够翻转。甲基化核苷酸的碱基对(即胞嘧啶)与AGT插入的精氨酸之间形成的氢键也促使该核苷酸旋转。随后,静电作用、范德华力接触以及氢键共同作用形成DNA与蛋白质的复合物。甲基转移前AGT与DNA更强的结合为将甲基加合物从DNA转移至AGT创造了合适的条件。