Airway Disease Section, National Heart and Lung Institute, Imperial College, London, United Kingdom.
Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology (R&I), Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom.
Am J Physiol Lung Cell Mol Physiol. 2024 Mar 1;326(3):L266-L279. doi: 10.1152/ajplung.00419.2022. Epub 2023 Dec 27.
Small airway disease (SAD) is a key early-stage pathology of chronic obstructive pulmonary disease (COPD). COPD is associated with cellular senescence whereby cells undergo growth arrest and express the senescence-associated secretory phenotype (SASP) leading to chronic inflammation and tissue remodeling. Parenchymal-derived fibroblasts have been shown to display senescent properties in COPD, however small airway fibroblasts (SAFs) have not been investigated. Therefore, this study investigated the role of these cells in COPD and their potential contribution to SAD. To investigate the senescent and fibrotic phenotype of SAF in COPD, SAFs were isolated from nonsmoker, smoker, and COPD lung resection tissue ( = 9-17 donors). Senescence and fibrotic marker expressions were determined using iCELLigence (proliferation), qPCR, Seahorse assay, and ELISAs. COPD SAFs were further enriched for senescent cells using FACSAria Fusion based on cell size and autofluorescence (10% largest/autofluorescent vs. 10% smallest/nonautofluorescent). The phenotype of the senescence-enriched population was investigated using RNA sequencing and pathway analysis. Markers of senescence were observed in COPD SAFs, including senescence-associated β-galactosidase, SASP release, and reduced proliferation. Because the pathways driving this phenotype were unclear, we used cell sorting to enrich senescent COPD SAFs. This population displayed increased p21 and p16 expression and mitochondrial dysfunction. RNA sequencing suggested these senescent cells express genes involved in oxidative stress response, fibrosis, and mitochondrial dysfunction pathways. These data suggest COPD SAFs are senescent and may be associated with fibrotic properties and mitochondrial dysfunction. Further understanding of cellular senescence in SAFs may lead to potential therapies to limit SAD progression. Fibroblasts and senescence are thought to play key roles in the pathogenesis of small airway disease and COPD; however, the characteristics of small airway-derived fibroblasts are not well explored. In this study we isolate and enrich the senescent small airway-derived fibroblast (SAF) population from COPD lungs and explore the pathways driving this phenotype using bulk RNA-seq.
小气道疾病 (SAD) 是慢性阻塞性肺疾病 (COPD) 的早期关键病理。COPD 与细胞衰老有关,即细胞经历生长停滞并表达衰老相关的分泌表型 (SASP),导致慢性炎症和组织重塑。已证明肺实质衍生的成纤维细胞在 COPD 中具有衰老特性,但小气道成纤维细胞 (SAF) 尚未被研究。因此,本研究探讨了这些细胞在 COPD 中的作用及其对 SAD 的潜在贡献。为了研究 COPD 中小气道成纤维细胞的衰老和纤维化表型,从非吸烟者、吸烟者和 COPD 肺切除组织中分离 SAF(n = 9-17 位供体)。使用 iCELLigence(增殖)、qPCR、 Seahorse 测定和 ELISA 测定来确定衰老和纤维化标志物的表达。进一步使用基于细胞大小和自发荧光的 FACSAria Fusion(10%最大/自发荧光与 10%最小/非自发荧光)从 COPD SAF 中富集衰老细胞。使用 RNA 测序和途径分析研究衰老富集群体的表型。在 COPD SAF 中观察到衰老相关标志物,包括衰老相关β-半乳糖苷酶、SASP 释放和增殖减少。由于尚不清楚驱动这种表型的途径,我们使用细胞分选来富集衰老的 COPD SAF。该群体显示出增加的 p21 和 p16 表达和线粒体功能障碍。RNA 测序表明,这些衰老细胞表达涉及氧化应激反应、纤维化和线粒体功能障碍途径的基因。这些数据表明,COPD SAF 是衰老的,可能与纤维化特性和线粒体功能障碍有关。进一步了解 SAF 中的细胞衰老可能会导致潜在的治疗方法来限制 SAD 的进展。成纤维细胞和衰老被认为在小气道疾病和 COPD 的发病机制中起关键作用;然而,小气道衍生成纤维细胞的特征尚未得到很好的探索。在这项研究中,我们从小气道疾病和 COPD 患者的肺组织中分离并富集衰老的小气道衍生成纤维细胞 (SAF) 群体,并使用批量 RNA-seq 探索驱动这种表型的途径。